Efficient use of industrial equipment, increase its availability, safety and economic issues spur strong research on maintenance programs based on their operating conditions. Machines normally operate in a linear rang...Efficient use of industrial equipment, increase its availability, safety and economic issues spur strong research on maintenance programs based on their operating conditions. Machines normally operate in a linear range, but when malfunctions occur, nonlinear behavior might set in. By studying and comparing five nonlinear features, which listed in decreasing order by their damage detection capability are: LLE (largest Lyapunov exponent), embedded dimension, Kappa determinism, time delay and cross error values; i.e., LLE performs best. Using somewhat similar ideas from Chaos control, i.e., vary the "mass imbalance" forcing parameters, we aim to stabilize the Lorenz equation. Quite interestingly, for certain imbalance excitation values, the system is stabilized. The previous even when paradigmatically chaotic parameters for Lorenz system are used (plus our forcing terms). This quasi-control approach is validated studying signals obtained from the previously mentioned lab test. Finally, it is concluded that analyzing and comparing nonlinear features extracted from baseline vs. malfunction condition (test acquired), one might increase the efficiency and the performance of machine condition monitoring.展开更多
文摘Efficient use of industrial equipment, increase its availability, safety and economic issues spur strong research on maintenance programs based on their operating conditions. Machines normally operate in a linear range, but when malfunctions occur, nonlinear behavior might set in. By studying and comparing five nonlinear features, which listed in decreasing order by their damage detection capability are: LLE (largest Lyapunov exponent), embedded dimension, Kappa determinism, time delay and cross error values; i.e., LLE performs best. Using somewhat similar ideas from Chaos control, i.e., vary the "mass imbalance" forcing parameters, we aim to stabilize the Lorenz equation. Quite interestingly, for certain imbalance excitation values, the system is stabilized. The previous even when paradigmatically chaotic parameters for Lorenz system are used (plus our forcing terms). This quasi-control approach is validated studying signals obtained from the previously mentioned lab test. Finally, it is concluded that analyzing and comparing nonlinear features extracted from baseline vs. malfunction condition (test acquired), one might increase the efficiency and the performance of machine condition monitoring.