Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected ...Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.展开更多
This paper considers large sample inference for the regression parameter in a partially linear regression model with longitudinal data and a-mixing errors. The authors introduce an estimated empirical likelihood for t...This paper considers large sample inference for the regression parameter in a partially linear regression model with longitudinal data and a-mixing errors. The authors introduce an estimated empirical likelihood for the regression parameter and show that its limiting distribution is a mixture of central chi-squared distributions. Also, the authors derive an adjusted empirical likelihood method which is shown to have a central chi-square limiting distribution. A simulation study is carried out to assess the performance of the empirical likelihood method.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11301569,11471029 and 11101014)the Beijing Natural Science Foundation(Grant No.1142002)+2 种基金the Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)Hong Kong Research Grant(Grant No.HKBU202711)Hong Kong Baptist University FRG Grants(Grant Nos.FRG2/11-12/110 and FRG1/13-14/018)
文摘Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.
基金supported by the National Natural Science Foundation of China under Grant Nos.11271286,11271286,71171003,and 11226218Provincial Natural Science Research Project of Anhui Colleges under Grant No.KJ2011A032Anhui Provincial Natural Science Foundation under Grant Nos.1208085QA04 and 10040606Q03
文摘This paper considers large sample inference for the regression parameter in a partially linear regression model with longitudinal data and a-mixing errors. The authors introduce an estimated empirical likelihood for the regression parameter and show that its limiting distribution is a mixture of central chi-squared distributions. Also, the authors derive an adjusted empirical likelihood method which is shown to have a central chi-square limiting distribution. A simulation study is carried out to assess the performance of the empirical likelihood method.