流形学习是为了寻找高维空间中观测数据的低维嵌入.作为一种有效的非线性维数约减方法,流形学习被广泛应用于数据挖掘、模式识别等机器学习领域.然而,对于样本外点学习、增量学习和在线学习等流形学习方法,面对流式大数据的学习算法时...流形学习是为了寻找高维空间中观测数据的低维嵌入.作为一种有效的非线性维数约减方法,流形学习被广泛应用于数据挖掘、模式识别等机器学习领域.然而,对于样本外点学习、增量学习和在线学习等流形学习方法,面对流式大数据的学习算法时间效率较低.为此提出了一种新的基于增量切空间的自适应流式大数据学习算法(self-adaptive streaming big data learning algorithm based on incremental tangent space alignment,SLITSA),该算法采用增量PCA的思想,增量地构造子空间,能在线或增量地检测数据流中的内在低维流形结构,在迭代过程中构建新的切空间进行调准,保证了算法的收敛性并降低了重构误差.通过人工数据集以及真实数据集上的实验表明:该算法分类精度和时间效率优于其他学习算法,可推广到在线或流式大数据的应用当中.展开更多
Based on the log-linear virtual age process, an imperfect preventive maintenance policy for numerical control(NC)machine tools with random maintenance quality is proposed. The proposed model is a combination of the Ki...Based on the log-linear virtual age process, an imperfect preventive maintenance policy for numerical control(NC)machine tools with random maintenance quality is proposed. The proposed model is a combination of the Kijima type virtual age model and the failure intensity adjustment model. Maintenance intervals of the proposed hybrid model are derived when the failure intensity increase factor and the restoration factor are both random variables with uniform distribution. The optimal maintenance policy in infinite time horizon is presented. A numerical example is given when the failures of NC machine tools are described by the log-linear process. Finally, a discussion is presented to show how the optimal results depend on the different cost parameters.展开更多
An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often...An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.展开更多
High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this prob...High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.展开更多
文摘流形学习是为了寻找高维空间中观测数据的低维嵌入.作为一种有效的非线性维数约减方法,流形学习被广泛应用于数据挖掘、模式识别等机器学习领域.然而,对于样本外点学习、增量学习和在线学习等流形学习方法,面对流式大数据的学习算法时间效率较低.为此提出了一种新的基于增量切空间的自适应流式大数据学习算法(self-adaptive streaming big data learning algorithm based on incremental tangent space alignment,SLITSA),该算法采用增量PCA的思想,增量地构造子空间,能在线或增量地检测数据流中的内在低维流形结构,在迭代过程中构建新的切空间进行调准,保证了算法的收敛性并降低了重构误差.通过人工数据集以及真实数据集上的实验表明:该算法分类精度和时间效率优于其他学习算法,可推广到在线或流式大数据的应用当中.
基金Project(51465034)supported by the National Natural Science Foundation of China
文摘Based on the log-linear virtual age process, an imperfect preventive maintenance policy for numerical control(NC)machine tools with random maintenance quality is proposed. The proposed model is a combination of the Kijima type virtual age model and the failure intensity adjustment model. Maintenance intervals of the proposed hybrid model are derived when the failure intensity increase factor and the restoration factor are both random variables with uniform distribution. The optimal maintenance policy in infinite time horizon is presented. A numerical example is given when the failures of NC machine tools are described by the log-linear process. Finally, a discussion is presented to show how the optimal results depend on the different cost parameters.
基金Project supported by the National Natural Science Foundation of China (No. 60171006) and the National Basic Research Program (973) of China (No. 2005CB724303)
文摘An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accu- rately. The method introduced here can also be applied to other medium-sized and noisy physiological signals.
基金Project(60835005) supported by the National Nature Science Foundation of China
文摘High dimensional data clustering,with the inherent sparsity of data and the existence of noise,is a serious challenge for clustering algorithms.A new linear manifold clustering method was proposed to address this problem.The basic idea was to search the line manifold clusters hidden in datasets,and then fuse some of the line manifold clusters to construct higher dimensional manifold clusters.The orthogonal distance and the tangent distance were considered together as the linear manifold distance metrics. Spatial neighbor information was fully utilized to construct the original line manifold and optimize line manifolds during the line manifold cluster searching procedure.The results obtained from experiments over real and synthetic data sets demonstrate the superiority of the proposed method over some competing clustering methods in terms of accuracy and computation time.The proposed method is able to obtain high clustering accuracy for various data sets with different sizes,manifold dimensions and noise ratios,which confirms the anti-noise capability and high clustering accuracy of the proposed method for high dimensional data.