期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于高斯小波函数和线性表达法的开口板自由振动特性研究 被引量:1
1
作者 郭文杰 柴天建 +1 位作者 颜建伟 洪显 《振动与冲击》 EI CSCD 北大核心 2024年第6期29-37,共9页
研究开口板自振特性的求解方法,将开口部位视为厚度为零的板,引入局域化特性的高斯小波函数作为位移形函数来捕捉厚度突变的情况,提高解的精确度。提出线性表达方法解耦位移形函数与边界条件,基本思路是通过高斯消元法找到约束条件矩阵... 研究开口板自振特性的求解方法,将开口部位视为厚度为零的板,引入局域化特性的高斯小波函数作为位移形函数来捕捉厚度突变的情况,提高解的精确度。提出线性表达方法解耦位移形函数与边界条件,基本思路是通过高斯消元法找到约束条件矩阵中线性无关的列向量,将位移形函数中的未知系数转变为线性无关系数列向量的线性表达,从而将有约束问题转变为无约束问题。对四边简支和四边固定的开口板进行分析,结合有限元方法计算结果,讨论解的收敛性和准确性。研究了不同开口尺寸、开口形状对自振频率的影响,得到开口尺寸、开口形状与自振频率关系曲线,对影响的原因进行了解释。最后计算了不同边界约束条件下多开口板的自振频率。 展开更多
关键词 高斯小波函数 线性表达法 自振特性 能量法 开口板
下载PDF
Approximate Analytic Solution of Solitary Wave for a Class of Nonlinear Disturbed Long-Wave System 被引量:5
2
作者 莫嘉琪 姚静荪 唐荣荣 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第7期27-30,共4页
In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
关键词 nonlinear long-wave equation solitary wave approximate analytic solution
下载PDF
Dynamics of Nonautonomous Dark Solitons
3
作者 LIU Chong YANG Zhan-Ying +3 位作者 ZHANG Ming ZHANG Tao YANG Wen-Li YUE Rui-Hong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第6期703-710,共8页
We solve a generalized nonautonomous nonlinear Schrodinger equation analytically by performing the Hirota's bilinearization method. The precise expression of a parameter e, which provides a compatibility condition an... We solve a generalized nonautonomous nonlinear Schrodinger equation analytically by performing the Hirota's bilinearization method. The precise expression of a parameter e, which provides a compatibility condition and dark soliton management, is obtained. Comparing with nonautonomous bright soliton, we find that the gain parameter affects both the background and the valley of dark soliton (∈2 ≠ 1) while it has no effects on the wave central position. Moreover, the precise expressions of a nonautonomous black soliton's (∈2 = 1) width, background and the trajectory of its wave central, which describe the dynamic behavior of soliton's evolution, are investigated analytically. Finally, the stability of the dark soliton solution is demonstrated numerically. It is shown that the main characteristic of the dark solitons keeps unchanged under a slight perturbation in the compatibility condition. 展开更多
关键词 nonautonomous dark soliton soliton management nonlinear fiber
原文传递
A sixth-order wavelet integral collocation method for solving nonlinear boundary value problems in three dimensions 被引量:1
4
作者 Zhichun Hou Jiong Weng +2 位作者 Xiaojing Liu Youhe Zhou Jizeng Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第2期81-92,I0003,共13页
A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate e... A sixth-order accurate wavelet integral collocation method is proposed for solving high-order nonlinear boundary value problems in three dimensions.In order to realize the establishment of this method,an approximate expression of multiple integrals of a continuous function defined in a three-dimensional bounded domain is proposed by combining wavelet expansion and Lagrange boundary extension.Through applying such an integral technique,during the solution of nonlinear partial differential equations,the unknown function and its lower-order partial derivatives can be approximately expressed by its highest-order partial derivative values at nodes.A set of nonlinear algebraic equations with respect to these nodal values of the highest-order partial derivative is obtained using a collocation method.The validation and convergence of the proposed method are examined through several benchmark problems,including the eighth-order two-dimensional and fourth-order three-dimensional boundary value problems and the large deflection bending of von Karman plates.Results demonstrate that the present method has higher accuracy and convergence rate than most existing numerical methods.Most importantly,the convergence rate of the proposed method seems to be independent of the order of the differential equations,because it is always sixth order for second-,fourth-,sixth-,and even eighth-order problems. 展开更多
关键词 Nonlinear boundary value problems Eighth-order derivative Coiflet wavelet Integral collocation method Von Karman plate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部