Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation me...Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation methods, such as three-dimensional variational data assimilation or an Ensemble Kalman Filter. In this study, the authors illustrate a new approach that makes effective use of precipitation data to improve rainfall forecast. The new method directly obtains an optimal solution in a reduced space by fitting observations with historical time series generated by the model; it also avoids the implementation of tangent linear model and its adjoint. A lot of historical samples are produced as the ensemble of precipitation observations with the fully nonlinear forecast model. The results show that the new approach is capable of extracting information from precipitation observations to improve the analysis and forecast. This method provides comparable performance with the standard fourdimensional variational data assimilation at a much lower computational cost.展开更多
The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state obse...The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state observers to detect, localize and evaluate the crack conditions, seeking the model limitations through an experiment developed at the mechanical department of UNESP, llha Solteira, S^o Paulo-Brazil. Three different notch sizes were placed, one by one, at the top surface of a cantilever beam (to be considered as a crack at the mechanical system) and harmonic forces were applied at the tip of the beam with three different frequencies, for each notch size, to obtain experimental data to run the diagnosis algorithm. From the results it was possible to infer that the observation system performance increases with the raising of the crack size, which can be explained by the model, that gets more accurate with bigger crack sizes, however, when the propagation of the crack is considered at the model, the diagnosis of the crack presence tends to be more difficult. It was also possible to conclude that the developed algorithm works properly for systems which excitation frequencies are higher than 20 Hz and different from the natural frequencies of the system, due to influence of dynamic response of the crack at the model.展开更多
基金the Ministry of Finance of China and China Meteorological Administration for the Special Project of Meteorological Sector (Grant No. GYHY(QX)2007-615)the National Basic Research Program of China (Grant No. 2005CB321703)
文摘Observations of accumulated precipitation are extremely valuable for effectively improving rainfall analysis and forecast. It is, however, difficult to use such observations directly through sequential assimilation methods, such as three-dimensional variational data assimilation or an Ensemble Kalman Filter. In this study, the authors illustrate a new approach that makes effective use of precipitation data to improve rainfall forecast. The new method directly obtains an optimal solution in a reduced space by fitting observations with historical time series generated by the model; it also avoids the implementation of tangent linear model and its adjoint. A lot of historical samples are produced as the ensemble of precipitation observations with the fully nonlinear forecast model. The results show that the new approach is capable of extracting information from precipitation observations to improve the analysis and forecast. This method provides comparable performance with the standard fourdimensional variational data assimilation at a much lower computational cost.
文摘The purpose of this work is the study of a mathematical model to discretize cracks at continuous mechanical systems, applying all the available properties at computational algorithm using the methodology of state observers to detect, localize and evaluate the crack conditions, seeking the model limitations through an experiment developed at the mechanical department of UNESP, llha Solteira, S^o Paulo-Brazil. Three different notch sizes were placed, one by one, at the top surface of a cantilever beam (to be considered as a crack at the mechanical system) and harmonic forces were applied at the tip of the beam with three different frequencies, for each notch size, to obtain experimental data to run the diagnosis algorithm. From the results it was possible to infer that the observation system performance increases with the raising of the crack size, which can be explained by the model, that gets more accurate with bigger crack sizes, however, when the propagation of the crack is considered at the model, the diagnosis of the crack presence tends to be more difficult. It was also possible to conclude that the developed algorithm works properly for systems which excitation frequencies are higher than 20 Hz and different from the natural frequencies of the system, due to influence of dynamic response of the crack at the model.