在制造过程中,存在一类过程输出与一个或多个独立变量之间有线性函数关系的情况,称为线性轮廓(Linear profile)。针对线性轮廓控制的问题,提出了基于支持向量数据描述(Support Vector Data Description,SVDD)的线性轮廓控制图,并分析了S...在制造过程中,存在一类过程输出与一个或多个独立变量之间有线性函数关系的情况,称为线性轮廓(Linear profile)。针对线性轮廓控制的问题,提出了基于支持向量数据描述(Support Vector Data Description,SVDD)的线性轮廓控制图,并分析了SVDD参数对分类器性能的影响及控制图参数的确定方法。仿真结果表明,基于SVDD的线性轮廓控制图在监控截距和残差变异时比T2控制图性能更好,而监控斜率的变异时,T2控制图性能更好。展开更多
在复杂产品的制造过程中,轮廓(profile)数据是一类广泛存在的质量数据类型。为了能够尽快监测出线性轮廓内自相关过程中的异常,针对质量数据仅存在正常样本的情况,提出了基于一类支持向量机(one-class Support Vector Machine,OCSVM)的...在复杂产品的制造过程中,轮廓(profile)数据是一类广泛存在的质量数据类型。为了能够尽快监测出线性轮廓内自相关过程中的异常,针对质量数据仅存在正常样本的情况,提出了基于一类支持向量机(one-class Support Vector Machine,OCSVM)的监控方法。首先,介绍OCSVM方法原理;其次,构建OCSVM监控模型,通过数值仿真实验模拟得到平均运行长度,并给出详细的仿真过程;再次,以平均运行长度为准则,分析高斯核函数与多项式核函数对OCSVM方法监控性能的影响,结果表明:监控AR(1)模型时,多项式核函数具有优势;最后,将多项式核函数的仿真结果与传统的一些控制图进行对比,结果表明:当标准差以及斜率、截距同时发生变化时,OCSVM方法监控效果优于其他控制图;当自相关系数ρ=0.1(弱相关)截距发生较大偏移以及ρ=0.9(强相关)截距发生偏移时,OCSVM方法监控效果优于其他控制图。展开更多
文摘在制造过程中,存在一类过程输出与一个或多个独立变量之间有线性函数关系的情况,称为线性轮廓(Linear profile)。针对线性轮廓控制的问题,提出了基于支持向量数据描述(Support Vector Data Description,SVDD)的线性轮廓控制图,并分析了SVDD参数对分类器性能的影响及控制图参数的确定方法。仿真结果表明,基于SVDD的线性轮廓控制图在监控截距和残差变异时比T2控制图性能更好,而监控斜率的变异时,T2控制图性能更好。
文摘在复杂产品的制造过程中,轮廓(profile)数据是一类广泛存在的质量数据类型。为了能够尽快监测出线性轮廓内自相关过程中的异常,针对质量数据仅存在正常样本的情况,提出了基于一类支持向量机(one-class Support Vector Machine,OCSVM)的监控方法。首先,介绍OCSVM方法原理;其次,构建OCSVM监控模型,通过数值仿真实验模拟得到平均运行长度,并给出详细的仿真过程;再次,以平均运行长度为准则,分析高斯核函数与多项式核函数对OCSVM方法监控性能的影响,结果表明:监控AR(1)模型时,多项式核函数具有优势;最后,将多项式核函数的仿真结果与传统的一些控制图进行对比,结果表明:当标准差以及斜率、截距同时发生变化时,OCSVM方法监控效果优于其他控制图;当自相关系数ρ=0.1(弱相关)截距发生较大偏移以及ρ=0.9(强相关)截距发生偏移时,OCSVM方法监控效果优于其他控制图。