In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ...In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.展开更多
An H∞ filter design for linear time delay system with randomly varying sensor delay is investigated.The delay considered here is assumed to satisfy a certain stochastic characteristic.A stochastic variable satisfying...An H∞ filter design for linear time delay system with randomly varying sensor delay is investigated.The delay considered here is assumed to satisfy a certain stochastic characteristic.A stochastic variable satisfying Bernoulli random binary distribution is introduced and a new system model is established by employing the measurements with random delay.By using the linear matrix inequality(LMI) technique,sufficient conditions are derived for ensuring the mean-square stochastic stability of the filtering error systems and guaranteeing a prescribed H∞ filtering performance.Finally,a numerical example is given to demonstrate the effectiveness of the proposed approach.展开更多
The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is ...The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is obtained which involves unknown inputs represented by disturbances, model uncertainties and time-delays. As to the nominal system, sufficient conditions are provided for the existence of the mode-dependent H∞ filter by selecting the appropriate Lyapunov-Krasovskii function and the robust H∞ filter is proposed for the jump system while considering the time-delays and uncertainties. Both of above conditions for the existence of the H∞ filter and roust H∞ filter are presented in terms of linear matrix inequalities, and convex optimization problems are formulated to design the desired filters. By employing the proposed mode-dependent H∞ filter, the systems have the stochastic stability and better ability of restraining disturbances stochastically, and the given prescribed H∞ performance is guaranteed. Simulation resuhs illustrate the effectiveness of developed techniques.展开更多
The price of fuel oil continues to rise, decreased supplies oil at the other side, both factors increase the interest of researchers to conduct research related to fuel efficiency. Therefore the aim of this study is t...The price of fuel oil continues to rise, decreased supplies oil at the other side, both factors increase the interest of researchers to conduct research related to fuel efficiency. Therefore the aim of this study is to improve the efficiency fuel of diesel engine using fuel filter. The method used for the research is testing the most efficient fuel filters made of coil wire coil winding 5,000, the three distinguished from the coil core diameter of 44.5, 28.5 and 17.5 mm in diesel engine. The performance test was conducted from 1,100 rpm to 1,700 rpm, the throttle opening of 30%-60%. The first testing was done by creating a constant speed 1,500 rpm and throttle opening varies from 30% to 60%, further testing is done by varying the rpm start from 1,100 rpm to 1,700 rpm to make constant valve 40% and 60%.展开更多
The problem of navigation for the distributed satellites system using relative range mea- surements is investigated. Firstly, observability for every participating satellites is analyzed based on the nonlinear Kepleri...The problem of navigation for the distributed satellites system using relative range mea- surements is investigated. Firstly, observability for every participating satellites is analyzed based on the nonlinear Keplerian model containing J2 perturbation and the nonlinear measurements. It is proven that the minimum number of tracking satellites to assure the observability of the distributed satellites system is three. Additionally, the analysis shows that the J2 perturbation and the nonlinearity make little contribution to improve the observability for the navigation. Then, a quasi-consistent extended Kalman filter based navigation algorithm is proposed, which is quasi-consistent and can provide an on- line evaluation of the navigation precision. The simulation illustrates the feasibility and effectiveness of the proposed navigation algorithm for the distributed satellites system.展开更多
This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is ...This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is approximated by BFGS updates.The new method assures global convergence without using a merit function.By Lagrangian function in the filter and nonmonotone scheme,the authors prove that the method can overcome Maratos effect without using second order correction step so that the locally superlinear convergence is achieved.The primary numerical experiments are reported to show effectiveness of the proposed algorithm.展开更多
This paper presents a new nonmonotone filter line search technique in association with the MBFGS method for solving unconstrained minimization.The filter method,which is traditionally used for constrained nonlinear pr...This paper presents a new nonmonotone filter line search technique in association with the MBFGS method for solving unconstrained minimization.The filter method,which is traditionally used for constrained nonlinear programming(NLP),is extended to solve unconstrained NLP by converting the latter to an equality constrained minimization.The nonmonotone idea is employed to the filter method so that the restoration phrase,a common feature of most filter methods,is not needed.The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions.The results of numerical experiments indicate that the proposed method is efficient.展开更多
This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has mor...This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has more flexibility for the acceptance of the trial step and requires lesscomputational costs compared with the monotone one.The global and local convergence of the proposedmethod are given under some reasonable conditions.Further,two-step Q-superlinear convergence rateis established by introducing second order correction step.The numerical experiments are reported toshow the effectiveness of the proposed algorithm.展开更多
基金Project(61101185) supported by the National Natural Science Foundation of ChinaProject(2011AA1221) supported by the National High Technology Research and Development Program of China
文摘In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.
基金National Natural Science Foundations of China (No. 60474079,No. 60704024,No. 60774060,No. 61074025,and No. 61074024)
文摘An H∞ filter design for linear time delay system with randomly varying sensor delay is investigated.The delay considered here is assumed to satisfy a certain stochastic characteristic.A stochastic variable satisfying Bernoulli random binary distribution is introduced and a new system model is established by employing the measurements with random delay.By using the linear matrix inequality(LMI) technique,sufficient conditions are derived for ensuring the mean-square stochastic stability of the filtering error systems and guaranteeing a prescribed H∞ filtering performance.Finally,a numerical example is given to demonstrate the effectiveness of the proposed approach.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60574001)Program for New Century Excellent Talents in University(Grant No.NCET-05-0485)
文摘The problem of robust H∞ filtering for a class of neutral jump systems with time-delay and norm- bounded uncertainties is considered. By re-constructing the system, the dynamics of overall augmented error systems is obtained which involves unknown inputs represented by disturbances, model uncertainties and time-delays. As to the nominal system, sufficient conditions are provided for the existence of the mode-dependent H∞ filter by selecting the appropriate Lyapunov-Krasovskii function and the robust H∞ filter is proposed for the jump system while considering the time-delays and uncertainties. Both of above conditions for the existence of the H∞ filter and roust H∞ filter are presented in terms of linear matrix inequalities, and convex optimization problems are formulated to design the desired filters. By employing the proposed mode-dependent H∞ filter, the systems have the stochastic stability and better ability of restraining disturbances stochastically, and the given prescribed H∞ performance is guaranteed. Simulation resuhs illustrate the effectiveness of developed techniques.
文摘The price of fuel oil continues to rise, decreased supplies oil at the other side, both factors increase the interest of researchers to conduct research related to fuel efficiency. Therefore the aim of this study is to improve the efficiency fuel of diesel engine using fuel filter. The method used for the research is testing the most efficient fuel filters made of coil wire coil winding 5,000, the three distinguished from the coil core diameter of 44.5, 28.5 and 17.5 mm in diesel engine. The performance test was conducted from 1,100 rpm to 1,700 rpm, the throttle opening of 30%-60%. The first testing was done by creating a constant speed 1,500 rpm and throttle opening varies from 30% to 60%, further testing is done by varying the rpm start from 1,100 rpm to 1,700 rpm to make constant valve 40% and 60%.
基金supported by the National Basic Research Program of China under Grant No.2014CB845303the National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciences
文摘The problem of navigation for the distributed satellites system using relative range mea- surements is investigated. Firstly, observability for every participating satellites is analyzed based on the nonlinear Keplerian model containing J2 perturbation and the nonlinear measurements. It is proven that the minimum number of tracking satellites to assure the observability of the distributed satellites system is three. Additionally, the analysis shows that the J2 perturbation and the nonlinearity make little contribution to improve the observability for the navigation. Then, a quasi-consistent extended Kalman filter based navigation algorithm is proposed, which is quasi-consistent and can provide an on- line evaluation of the navigation precision. The simulation illustrates the feasibility and effectiveness of the proposed navigation algorithm for the distributed satellites system.
基金supported by the National Science Foundation of China under Grant No.10871130the Ph.D Foundation under Grant No.20093127110005+1 种基金the Shanghai Leading Academic Discipline Project under Grant No.S30405the Innovation Program of Shanghai Municipal Education Commission under Grant No.12YZ174
文摘This paper proposes a nonmonotone line search filter method with reduced Hessian updating for solving nonlinear equality constrained optimization.In order to deal with large scale problems,a reduced Hessian matrix is approximated by BFGS updates.The new method assures global convergence without using a merit function.By Lagrangian function in the filter and nonmonotone scheme,the authors prove that the method can overcome Maratos effect without using second order correction step so that the locally superlinear convergence is achieved.The primary numerical experiments are reported to show effectiveness of the proposed algorithm.
基金supported by the National Science Foundation under Grant No.11371253the Science Foundation under Grant No.11C0336 of Provincial Education Department of Hunan
文摘This paper presents a new nonmonotone filter line search technique in association with the MBFGS method for solving unconstrained minimization.The filter method,which is traditionally used for constrained nonlinear programming(NLP),is extended to solve unconstrained NLP by converting the latter to an equality constrained minimization.The nonmonotone idea is employed to the filter method so that the restoration phrase,a common feature of most filter methods,is not needed.The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions.The results of numerical experiments indicate that the proposed method is efficient.
基金supported by the National Science Foundation of China under Grant No. 10871130the Ph.D. Foundation under Grant No. 20093127110005+1 种基金the Shanghai Leading Academic Discipline Project under Grant No. S30405the Shanghai Finance Budget Project under Grant Nos. 1139IA0013 and 1130IA15
文摘This paper proposes a filter secant method with nonmonotone line search for non-linearequality constrained optimization.The Hessian of the Lagrangian is approximated using the BFGSsecant update.This new method has more flexibility for the acceptance of the trial step and requires lesscomputational costs compared with the monotone one.The global and local convergence of the proposedmethod are given under some reasonable conditions.Further,two-step Q-superlinear convergence rateis established by introducing second order correction step.The numerical experiments are reported toshow the effectiveness of the proposed algorithm.