In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanica...In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanical system as well as the symbolic computation implementation of this procedure is reviewed and projected into the Delta robot. Based on the established linear graph representation the explicit symbolic expression of constraint equations and inverse kinematic solutions are obtained successfully using a symbolic computation engine Maple so that actuator control and trajectory tracking can be directly realized.Two practical motions the circular path and Adept motion are simulated for the validation of symbolic solutions respectively.Results indicate that the simulation satisfies the requirement of the quick motion within an acceptable threshold. Thus the precision of kinematic response can be confirmed and the correctness of inverse solution is verified.展开更多
A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demon...A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.展开更多
With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear tra...With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear transformations, matrix keratosis and other anti-deepening understanding of the basics and improve the comprehensive ability to solve problems.展开更多
基金The National Natural Science Foundation of China(No.51205208)
文摘In order to effectively derive the inverse kinematic solution of the Delta robot and realize actuator control a description of the linear graph principle for automatically generating kinematic equations in a mechanical system as well as the symbolic computation implementation of this procedure is reviewed and projected into the Delta robot. Based on the established linear graph representation the explicit symbolic expression of constraint equations and inverse kinematic solutions are obtained successfully using a symbolic computation engine Maple so that actuator control and trajectory tracking can be directly realized.Two practical motions the circular path and Adept motion are simulated for the validation of symbolic solutions respectively.Results indicate that the simulation satisfies the requirement of the quick motion within an acceptable threshold. Thus the precision of kinematic response can be confirmed and the correctness of inverse solution is verified.
文摘A fractal approximation algorithm is developed to obtain approximate solutions to an inverse initial-value problem IVP(inverse IVP) for the differential equation. Numerical computational results are presented to demonstrate the effectiveness of this algorithm for solving inverse IVP for a class of specific differential equations.
文摘With the increasingly widespread application of linear algebra theory, and in its opposite direction is not enough emphasis, linear algebra, several important points: matrix, determinant, linear equations, linear transformations, matrix keratosis and other anti-deepening understanding of the basics and improve the comprehensive ability to solve problems.