High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system suc...High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system such as complicated calibration process,cumbersome aided-instruments,strict limitation of working distance, this paper carries out an optical method in which two high-speed cameras with variable-zoom lenses are adopted as binocular stereo sensors of measurement system and a high-ac-curacy 3D target with fast reconstruction is designed. The intrinsic parameters of the sensors and the relative positions between coordinate systems are solved by the method of colinearity constrained optimization algorithm. The calibration process is easy to operate and the device is also of portability. Most importantly, the severe working distance limitation between sensors and measured body is solved, enhancing the adaptability of measurement system to environment. Experimental results show that when the sensors are in the range of 8 -16 m away from the measured body, system accuracy can reach up to ±0. 5 mm, which meets the requirements to measure the dynamic envelope curve of high-speed vehicle.展开更多
Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed pha...Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.展开更多
By using the Collins diffraction formula and expanding the aperture function into a fmite sum of complex Gaussian functions, an analytical formula of the time light intensity distribution for oblique Gaussian beams pa...By using the Collins diffraction formula and expanding the aperture function into a fmite sum of complex Gaussian functions, an analytical formula of the time light intensity distribution for oblique Gaussian beams passing through a moving cat-eye optical lens and going back along the entrance way is deduced. By numerical computation, the variation laws of the time intensity distributions of the cat-eye reflected light with the viewing angle, imaging distance, aperture and instantaneous field of view are given. The results show that the relationship between the light intensity at the return place and the detection time is linear, and it is of inverse proportion only when the viewing angle is very large. For the staring imaging optical lens, the nonlinear extent of the time distribution curve becomes larger with the decrease of the viewing angle. For the instantaneous imaging optical lens, there is still some cat-eye reflected light when the detection system is out of the viewing field of the target lens.展开更多
基金National Science and Technology Major Project(No.2016ZX04003001)
文摘High-speed vehicle dynamic envelope curve is defined as the maximum limit outline affected by a variety of adverse factors while the train is running. Considering the difficulties in the current measurement system such as complicated calibration process,cumbersome aided-instruments,strict limitation of working distance, this paper carries out an optical method in which two high-speed cameras with variable-zoom lenses are adopted as binocular stereo sensors of measurement system and a high-ac-curacy 3D target with fast reconstruction is designed. The intrinsic parameters of the sensors and the relative positions between coordinate systems are solved by the method of colinearity constrained optimization algorithm. The calibration process is easy to operate and the device is also of portability. Most importantly, the severe working distance limitation between sensors and measured body is solved, enhancing the adaptability of measurement system to environment. Experimental results show that when the sensors are in the range of 8 -16 m away from the measured body, system accuracy can reach up to ±0. 5 mm, which meets the requirements to measure the dynamic envelope curve of high-speed vehicle.
基金supported by the National Key Project of Fundamental Research of China (Grant No.G1999-0222-07-08)the National Natural Science Foundation of China (Grant Nos.50736006 and 50606026)the Foundation of State Key Laboratory of Engines,Tianjin University (Grant No.K2010-07)
文摘Turbulent dispersed multiphase flows,including gas-particle,gas-droplet and bubble-liquid flows,are widely encountered in various engineering facilities.Modeling of two-phase turbulence,in particular the dispersed phase turbulence,is the key problem in the Eulerian-Eulerian simulation of practical dispersed multiphase flows.Although different models were developed and used,the experimental validation shows that they cannot always give satisfactory prediction results.In this paper the present author give a detailed review of the unified second-order moment (USM),k-k p and nonlinear k-k p two-phase turbulence models,proposed by him.The derivation and closure of these models are described in detail and the experimental validation and application of these models are extensively discussed.
文摘By using the Collins diffraction formula and expanding the aperture function into a fmite sum of complex Gaussian functions, an analytical formula of the time light intensity distribution for oblique Gaussian beams passing through a moving cat-eye optical lens and going back along the entrance way is deduced. By numerical computation, the variation laws of the time intensity distributions of the cat-eye reflected light with the viewing angle, imaging distance, aperture and instantaneous field of view are given. The results show that the relationship between the light intensity at the return place and the detection time is linear, and it is of inverse proportion only when the viewing angle is very large. For the staring imaging optical lens, the nonlinear extent of the time distribution curve becomes larger with the decrease of the viewing angle. For the instantaneous imaging optical lens, there is still some cat-eye reflected light when the detection system is out of the viewing field of the target lens.