期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
线性降维映射方法识别火山岩岩性 被引量:6
1
作者 张丽华 潘保芝 +1 位作者 单刚义 印长海 《物探化探计算技术》 CAS CSCD 2007年第2期112-114,共3页
随着世界对油气资源的需求不断增加,火山岩油气藏的勘探和开发逐步成为油气储量、产量的新的增长点。火山岩岩性研究是火山岩油气储层研究的基础。常规的识别岩性方法不是很有效,作者曾用主成份分析方法来识别火山岩岩性,取得了一些效果... 随着世界对油气资源的需求不断增加,火山岩油气藏的勘探和开发逐步成为油气储量、产量的新的增长点。火山岩岩性研究是火山岩油气储层研究的基础。常规的识别岩性方法不是很有效,作者曾用主成份分析方法来识别火山岩岩性,取得了一些效果,能够把基性岩,中性岩和酸性岩三大类岩石区分开来。但当岩性中也包括结构时,识别的效果就不是很理想,很难将流纹岩和流纹质凝灰岩区分开来。对岩石薄片鉴定,全岩分析以及综合测井曲线得到的火山岩岩样应用线性降维映射方法来识别,取得了很好的效果,它能将常规主成份分析方法很难区分的流纹岩和流纹质凝灰岩区分开来。 展开更多
关键词 线性降维映射方法 火山岩 岩性识别
下载PDF
Locally linear embedding-based seismic attribute extraction and applications 被引量:5
2
作者 刘杏芳 郑晓东 +2 位作者 徐光成 王玲 杨昊 《Applied Geophysics》 SCIE CSCD 2010年第4期365-375,400,401,共13页
How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co... How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids. 展开更多
关键词 attribute optimization dimensionality reduction locally linear embedding(LLE) manifold learning principle component analysis(PCA)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部