利用虚拟激励法对随机结构正交展开理论进行扩展,并在Ritz向量子空间中对扩阶系统方程进行动力聚缩,提出了一类可以快速高效地进行线性随机结构复合随机振动分析的计算方法.算例分析表明,该法可以方便地分析随机结构在平稳或非平稳随...利用虚拟激励法对随机结构正交展开理论进行扩展,并在Ritz向量子空间中对扩阶系统方程进行动力聚缩,提出了一类可以快速高效地进行线性随机结构复合随机振动分析的计算方法.算例分析表明,该法可以方便地分析随机结构在平稳或非平稳随机激励下的复合随机振动问题,且分析结果与 Monte Carlo模拟分析结果符合良好;与均值参数确定性结构传统随机振动分析计算结果相比,随机结构在相同随机激励下响应自谱密度曲线具有峰值降低、谱宽增大的特点.展开更多
Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: ...Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: one is caused by the difference between the means of original and equivalent stochastic structure; and another is caused by the difference between the original and equivalent stochastic structure which has the relation with stochastic variables. Statistical characteristics of equivalent stochastic structure can be obtained in accordance with mean square criterion, so nonlinear stochastic structure is transformed into linear stochastic structure. In order to attain that objective, the compound response spectrum of linear stochastic structure under stationary random excitation which is used in the solution is derived in the case of the mutual independence between stochastic excitation and stochastic structure. Finally, the example shows the accuracy and validity of the proposed method.展开更多
The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introductio...The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively.展开更多
文摘利用虚拟激励法对随机结构正交展开理论进行扩展,并在Ritz向量子空间中对扩阶系统方程进行动力聚缩,提出了一类可以快速高效地进行线性随机结构复合随机振动分析的计算方法.算例分析表明,该法可以方便地分析随机结构在平稳或非平稳随机激励下的复合随机振动问题,且分析结果与 Monte Carlo模拟分析结果符合良好;与均值参数确定性结构传统随机振动分析计算结果相比,随机结构在相同随机激励下响应自谱密度曲线具有峰值降低、谱宽增大的特点.
文摘Equivalent stochastic linearization (ESL) for nonlinear uncertain structure under stationary stochastic excitation is presented. There are two parts of difference between the original system and equivalent system: one is caused by the difference between the means of original and equivalent stochastic structure; and another is caused by the difference between the original and equivalent stochastic structure which has the relation with stochastic variables. Statistical characteristics of equivalent stochastic structure can be obtained in accordance with mean square criterion, so nonlinear stochastic structure is transformed into linear stochastic structure. In order to attain that objective, the compound response spectrum of linear stochastic structure under stationary random excitation which is used in the solution is derived in the case of the mutual independence between stochastic excitation and stochastic structure. Finally, the example shows the accuracy and validity of the proposed method.
基金supported by National Natural Science Foundation of China (Grant No.10871016)
文摘The purpose of this paper is to give a selective survey on recent progress in random metric theory and its applications to conditional risk measures.This paper includes eight sections.Section 1 is a longer introduction,which gives a brief introduction to random metric theory,risk measures and conditional risk measures.Section 2 gives the central framework in random metric theory,topological structures,important examples,the notions of a random conjugate space and the Hahn-Banach theorems for random linear functionals.Section 3 gives several important representation theorems for random conjugate spaces.Section 4 gives characterizations for a complete random normed module to be random reflexive.Section 5 gives hyperplane separation theorems currently available in random locally convex modules.Section 6 gives the theory of random duality with respect to the locally L0-convex topology and in particular a characterization for a locally L0-convex module to be L0-pre-barreled.Section 7 gives some basic results on L0-convex analysis together with some applications to conditional risk measures.Finally,Section 8 is devoted to extensions of conditional convex risk measures,which shows that every representable L∞-type of conditional convex risk measure and every continuous Lp-type of convex conditional risk measure(1 ≤ p < +∞) can be extended to an L∞F(E)-type of σ,λ(L∞F(E),L1F(E))-lower semicontinuous conditional convex risk measure and an LpF(E)-type of T,λ-continuous conditional convex risk measure(1 ≤ p < +∞),respectively.