As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a succes...As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.展开更多
A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning ...A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results.展开更多
In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a c...In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a class of CNNs with multi-constant delays and time- varying coefficients. By applying Brouwer fixed point theorem and constructing the delay differential inequality, several delay-independent and delay-dependent sufficient conditions are derived for ensuring the existence, uniqueness and global exponential stability of equilibrium of the system and the exponentially convergent rate is estimated. And several examples and their simulations are given to illustrate the effectiveness of obtained results.展开更多
基金National Natural Science Foundation of China!(No.6 97740 33)
文摘As it is well known,it is difficult to identify a nonlinear time varying system using traditional identification approaches,especially under unknown nonlinear function.Neural networks have recently emerged as a successful tool in the area of identification and control of time invariant nonlinear systems.However,it is still difficult to apply them to complicated time varying system identification.In this paper we present a learning algorithm for identification of the nonlinear time varying system using feedforward neural networks.The main idea of this approach is that we regard the weights of the network as a state of a time varying system,then use a Kalman filter to estimate the state.Thus the network implements nonlinear and time varying mapping.We derived both the global and local learning algorithms.Simulation results demonstrate the effectiveness of this approach.
文摘A new method for identifying nonlinear time varying systems with unknown structure is presented. The method extends the application area of basis sequence identification. The essential idea is to utilize the learning and nonlinear approximating ability of neural networks to model the non linearity of the system, characterize time varying dynamics of the system by the time varying parametric vector of the network, then the parametric vector of the network is approximated by a weighted sum of known basis sequences. Because of black box modeling ability of neural networks, the presented method can identify nonlinear time varying systems with unknown structure. In order to improve the real time capability of the algorithm, the neural network is trained by a simple fast learning algorithm based on local least squares presented by the authors. The effectiveness and the performance of the method are demonstrated by some simulation results.
文摘In this paper, a class of cellular neural networks (CNNs) with multi-proportional delays is studied. The nonlinear transformation yi(t) = xi(et) transforms a class of CNNs with multi-proportional delays into a class of CNNs with multi-constant delays and time- varying coefficients. By applying Brouwer fixed point theorem and constructing the delay differential inequality, several delay-independent and delay-dependent sufficient conditions are derived for ensuring the existence, uniqueness and global exponential stability of equilibrium of the system and the exponentially convergent rate is estimated. And several examples and their simulations are given to illustrate the effectiveness of obtained results.