期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
线性预测编码(LPC)技术及其在音频文件上的应用 被引量:4
1
作者 史水平 李世作 《现代电子技术》 2004年第4期21-23,共3页
介绍了线性预测编码 ( L PC)技术原理和音频文件 ,尤其是波形音频文件格式 ,并且讨论了 L PC技术在音频文件上的应用 ,同时给出了 L PC处理 WAVE文件流程图和 WAVE文件恢复流程图。
关键词 线性预测编码技术 音频文件 波形音频文件 流程图
下载PDF
关于线性预测滤波器阶数的分析研究 被引量:7
2
作者 孙震 张江鑫 《杭州电子科技大学学报(自然科学版)》 2010年第5期153-156,共4页
线性预测技术是现代语音信号处理中的核心技术之一。该文详细介绍了线性预测技术的原理,并以G.729标准中为例,着重研究了线性预测滤波器的阶数对编码系统的影响,通过对不同阶数下的归一化均方误差及语音估计谱两方面的实验结果的对比分... 线性预测技术是现代语音信号处理中的核心技术之一。该文详细介绍了线性预测技术的原理,并以G.729标准中为例,着重研究了线性预测滤波器的阶数对编码系统的影响,通过对不同阶数下的归一化均方误差及语音估计谱两方面的实验结果的对比分析,总结了线性预测滤波器阶数的选择。 展开更多
关键词 线性预测技术 滤波器阶数 归一化均方误差 估计谱
下载PDF
预测控制技术及应用发展综述 被引量:41
3
作者 许超 陈治纲 邵惠鹤 《化工自动化及仪表》 CAS 北大核心 2002年第3期1-10,共10页
介绍高级控制理论的发展历史特别是预测控制技术的发展。从理论研究和实际应用两个角度阐述了当前国内外预测控制理论和应用方面的发展情况 ,并指出发展自己的高级控制软件技术是当前国内工业控制界的努力方向。
关键词 综述 模型预测控制技术 线性预测控制技术 鲁棒预测控制技术 自适应预测控制技术
下载PDF
一种用于语音编码的快速自适应码书搜索算法 被引量:3
4
作者 王艳 黄建国 李钒 《计算机工程与应用》 CSCD 北大核心 2007年第15期69-71,94,共4页
码激励线性预测技术(简称CELP)能够在低比特率的情况下实现较高质量的语音,但其运算复杂度高。自适应码书搜索替代长时预测,是大多CELP编码方案的关键。介绍了CELP的基本原理并讨论了自适应码书搜索算法,提出将一种快速自适应码书搜索... 码激励线性预测技术(简称CELP)能够在低比特率的情况下实现较高质量的语音,但其运算复杂度高。自适应码书搜索替代长时预测,是大多CELP编码方案的关键。介绍了CELP的基本原理并讨论了自适应码书搜索算法,提出将一种快速自适应码书搜索算法引入到传统4.8kbp FS1016使其复杂度明显降低。仿真结果表明,该方法既保持了4.8kbs FS1016传统算法复原语音的质量,又使自适应码书搜索运算量下降约40%以上。 展开更多
关键词 码激励线性预测技术 4.8kbp FS1016 长时预测 快速自适应码书搜索算法
下载PDF
长时平均功率谱在声纹鉴定中的应用研究 被引量:1
5
作者 陈维娜 李同 张肖肖 《中国人民公安大学学报(自然科学版)》 2017年第2期25-30,共6页
声纹鉴定是一项对语音的同一性问题作出判断的法庭科学技术。进行声纹鉴定的关键是尽可能多地提取有价值的语音特征。长时平均功率谱(LTAS,Long Term Average Spectrum)是语音的频谱特征之一,能够反映出一段语流中说话人的全部频率分量... 声纹鉴定是一项对语音的同一性问题作出判断的法庭科学技术。进行声纹鉴定的关键是尽可能多地提取有价值的语音特征。长时平均功率谱(LTAS,Long Term Average Spectrum)是语音的频谱特征之一,能够反映出一段语流中说话人的全部频率分量,以及各频率分量与强度之间的关系,是表征个人语音特性的参量之一,可采用线性预测分析技术获得。通过系统实验,找出同一人发音LTAS的稳定性,不同人发音LTAS的差异性;并讨论信道、文本、语境、时长、噪音等因素对LTAS的影响;确定LTAS的应用范围和条件,以期为声纹鉴定实践工作提供新思路。 展开更多
关键词 声纹鉴定 线性预测技术 长时平均功率谱 语音特征 影响因素
下载PDF
基于FS1016语音压缩编码标准的编解码仿真研究
6
作者 王艳 黄建国 李钒 《电声技术》 2007年第5期49-51,共3页
FS1016 4 800bit/s是基于码激励线性预测技术的语音编码标准,在实现高质量的窄带语音通信方面有着广泛的应用。介绍了FS1016 4 800bit/s的编码标准并讨论了CELP的基本原理,提出了基于FS1016 4 800bit/s编码标准的编、解码器仿真实现方案... FS1016 4 800bit/s是基于码激励线性预测技术的语音编码标准,在实现高质量的窄带语音通信方面有着广泛的应用。介绍了FS1016 4 800bit/s的编码标准并讨论了CELP的基本原理,提出了基于FS1016 4 800bit/s编码标准的编、解码器仿真实现方案,并进行了仿真试验。仿真结果表明,该方案具有很好的可行性,为以后在DSP系统实现该编码标准提供了很好的基础。 展开更多
关键词 语音压缩编码 FS1016 4800 biffs 码激励线性预测技术
下载PDF
共振峰信息在汉语声调感知中的作用 被引量:7
7
作者 王硕 Robert Mannell +5 位作者 Philip Newall 董瑞娟 李靖 张华 陈雪清 韩德民 《中国耳鼻咽喉头颈外科》 2012年第1期8-11,共4页
目的探讨言语频域共振峰信息在汉语普通话声调识别中的作用。方法采用线性预测编码(linearprediction coding,LPC)技术将单音节字的频域包络(即共振峰信息)与精细结构(即基频谐波信息)分离,合成128个只具有频域包络信息的"单音节字... 目的探讨言语频域共振峰信息在汉语普通话声调识别中的作用。方法采用线性预测编码(linearprediction coding,LPC)技术将单音节字的频域包络(即共振峰信息)与精细结构(即基频谐波信息)分离,合成128个只具有频域包络信息的"单音节字"。使用这些"单音节字"测试20例听力正常受试者的声调感知能力。结果听力正常受试者依靠共振峰信息识别三声的正确率为69%,识别二声的正确率为42%,识别一声和四声的能力均低于机会值(25%),声调的平均识别率为36%。只依靠共振峰信息,三声与二声的识别容易混淆,一声与四声较易误识别成二声与三声。结论共振峰信息(尤其是第一共振峰)可以为声调识别提供一些线索,但不起主要作用。 展开更多
关键词 语音学 汉语声调 线性预测编码技术 共振峰 基频 声调识别
下载PDF
动物全基因组关联分析的混合模型方法 被引量:1
8
作者 韩丹丹 赵敬丽 +1 位作者 王丽娟 杨润清 《黑龙江畜牧兽医》 CAS 北大核心 2017年第5期107-109,共3页
在动物全基因组关联分析(Genome-Wide Association Studies,GWAS)中,线性混合模型通过校正群体分层、个体间亲缘关系和微效多基因对标记关联检验的影响有效地控制了数量性状基因座(Quantitative Trait Locus,QTL)检测的假阳性率。文章... 在动物全基因组关联分析(Genome-Wide Association Studies,GWAS)中,线性混合模型通过校正群体分层、个体间亲缘关系和微效多基因对标记关联检验的影响有效地控制了数量性状基因座(Quantitative Trait Locus,QTL)检测的假阳性率。文章综述了混合模型之于GWAS基因定位的求解策略和方法,包括逐个标记的GWAS方法和联合多标记的GWAS方法。评论了这些方法在计算效率、QTL检测效率和模型拟合度方面的优缺点。指出了完善的全基因组关联分析方法不仅能够高效率地检测QTL,还能够最优地拟合性状表型值和预测基因组育种值。 展开更多
关键词 全基因组关联分析(GWAS) 线性混合模型 主效基因 微效多基因 最佳线性无偏预测技术(BLUP) 多位点混合模型
下载PDF
听觉模型与语音信号处理方法的研究 被引量:2
9
作者 刘婧婕 张刚 武淑红 《计算机技术与发展》 2012年第2期61-64,68,共5页
在通信领域中,语音编码是语音信号处理的重要分支。为了适合信道传输,语音必须变换形式,基于承载信息并且保留信号,尽可能地处理。在当今的通信、计算机网络等应用领域中,具备低延迟、低码率两大特性的语音编码算法,发挥着决定性作用。... 在通信领域中,语音编码是语音信号处理的重要分支。为了适合信道传输,语音必须变换形式,基于承载信息并且保留信号,尽可能地处理。在当今的通信、计算机网络等应用领域中,具备低延迟、低码率两大特性的语音编码算法,发挥着决定性作用。在语音编码中,线性预测分析技术主要应用在感觉加权滤波器、综合滤波器及对数增益滤波器,该技术发挥着关键作用。文中的工作是呈现出一种混合LPC(Auditory-Acoustic-Hybrid-LPC)系数,它结合声学特性与听觉特性,以便提高编码后合成语音的听觉质量,这对编码算法的钻研有积极意义。 展开更多
关键词 线性预测分析技术 声学特性 听觉特性
下载PDF
Statistically Downscaled Temperature Scenarios over China 被引量:3
10
作者 FAN Li-Jun 《Atmospheric and Oceanic Science Letters》 2009年第4期208-213,共6页
Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screen... Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screening procedure is used for selecting the skilful PCs as predictors used in the regression equation. The predictors include temperature at 850 hPa (7), the combination of sea-level pressure and temperature at 850 hPa (P+T) and the combination of geo-potential height and temperature at 850 hPa (H+T). The downscaling procedure is tested with the three predictors over three predictor domains. The optimum statistical model is obtained for each station and month by finding the predictor and predictor domain corresponding to the highest correlation. Finally, the optimum statistical downscaling models are applied to the Hadley Centre Coupled Model, version 3 (HadCM3) outputs under the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios to construct local future temperature change scenarios for each station and month, The results show that (1) statistical downscaling produces less warming than the HadCM3 output itself; (2) the downscaled annual cycles of temperature differ from the HadCM3 output, but are similar to the observation; (3) the downscaled temperature scenarios show more warming in the north than in the south; (4) the downscaled temperature scenarios vary with emission scenarios, and the A2 scenario produces more warming than the B2, especially in the north of China. 展开更多
关键词 statistical downscaling temperature scenarios annual cycles China
下载PDF
Fortified Financial Forecasting Models Based on Non-Linear Searching Approaches
11
作者 Mohammad R. Hamidizadeh Mohammad E. Fadaeinejad 《Journal of Modern Accounting and Auditing》 2012年第2期232-240,共9页
The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i... The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i.e., secular trends, cyclical variations, seasonal effects, and stochastic variations), they believe the best forecasting model is the one which realistically considers the underlying causal factors in a situational relationship and therefore has the best "track records" in generating data. Paper's models can be adjusted for variations in related a time series which processes a great deal of randomness, to improve the accuracy of the financial forecasts. Because of Na'fve forecasting models are based on an extrapolation of past values for future. These models may be adjusted for seasonal, secular, and cyclical trends in related data. When a data series processes a great deal of randomness, smoothing techniques, such as moving averages and exponential smoothing, may improve the accuracy of the financial forecasts. But neither Na'fve models nor smoothing techniques are capable of identifying major future changes in the direction of a situational data series. Hereby, nonlinear techniques, like direct and sequential search approaches, overcome those shortcomings can be used. The methodology which we have used is based on inferential analysis. To build the models to identify the major future changes in the direction of a situational data series, a comparative model building is applied. Hereby, the paper suggests using some of the nonlinear techniques, like direct and sequential search approaches, to reduce the technical shortcomings. The final result of the paper is to manipulate, to prepare, and to integrate heuristic non-linear searching methods to serve calculating adjusted factors to produce the best forecast data. 展开更多
关键词 Naive forecasting models smoothing techniques Fibonacci and Golden section search line search bycurve fit
下载PDF
A Neural Network based Method for Detection of Weak Underwater Signals 被引量:1
12
作者 潘俊阳 韩晶 杨士莪 《Journal of Marine Science and Application》 2010年第3期256-261,共6页
Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function ... Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function (RBF) neural networks and an extended Kalman filter (EKF).In this method chaos theory was used to model background noise.Noise was predicted by phase space reconstruction techniques and RBF neural networks in a synergistic manner.In the absence of a signal, prediction error stayed low and became relatively large when the input contained a signal.EKF was used to improve the convergence rate of the RBF neural network.Application of the scheme to different experimental data sets showed that the algorithm can detect signals hidden in strong noise even when the signal-to-noise ratio (SNR) is less than -40d B. 展开更多
关键词 detection theory underwater weak signal extended Kalman filter
下载PDF
Electric Energy Management Modeling for Kingdom of Bahrain
13
作者 Isa Salman Qamber Mohammed Yusuf Al-Hamad Abdul Majeed Habib Abdul Karim 《Journal of Energy and Power Engineering》 2015年第10期872-885,共14页
In the deregulated economy, the maximum load forecasting is important for the electric industry. Many applications are included such as the energy generation and purchasing. The aim of the present study is to find the... In the deregulated economy, the maximum load forecasting is important for the electric industry. Many applications are included such as the energy generation and purchasing. The aim of the present study is to find the most suitable models for the peak load of the Kingdom of Bahrain. Many mathematical methods have been developing for maximum load forecasting. In the present paper, the modeling of the maximum load, population and GDP (gross domestic product) versus years obtained. The curve fitting technique used to find that models, where Graph 4.4.2 as a tool used to find the models. As well, Neuro-Fuzzy used to find the three models. Therefore, three techniques are used. These three are exponential, linear modeling and Neuro-Fuzzy. It is found that, the Neuro-Fuzzy is the most suitable and realistic one. Then, the linear modeling is the next suitable one. 展开更多
关键词 NEURO-FUZZY peak loads POPULATION GDP Graph 4.4.2 curve fitting.
下载PDF
编码理论、信道理论与技术、编译码器
14
《电子科技文摘》 1999年第11期57-59,共3页
本文介绍了基于信道输入确定模型的多信道 FIR系统的有效盲识别算法,通过多信道识别去耦合,所提方法能够单独进行信道估计而不必解决增大信道响应,应用线性预测技术来实现此算法.计算有效并适合于实时应用。通过计算机模拟论证了此算法... 本文介绍了基于信道输入确定模型的多信道 FIR系统的有效盲识别算法,通过多信道识别去耦合,所提方法能够单独进行信道估计而不必解决增大信道响应,应用线性预测技术来实现此算法.计算有效并适合于实时应用。通过计算机模拟论证了此算法的有效性。 展开更多
关键词 理论与技术 编译码器 编码理论 计算机模拟 多信道识别 语音编码算法 盲识别 信道估计 自适应 线性预测技术
原文传递
AMR语音编解码算法分析及优化 被引量:1
15
作者 黄桃 李小文 袁李林 《通信技术》 2007年第12期391-393,共3页
自适应多速率语音编解码技术共有八种速率,每一种速率都是基于代数码本线性预测技术语音编解码算法的。文中参照3GPPTS协议,分析了代数码本线性预测技术的编解码原理,并对其中的关键技术开环基音分析和固定码本搜索提出了优化方法。经... 自适应多速率语音编解码技术共有八种速率,每一种速率都是基于代数码本线性预测技术语音编解码算法的。文中参照3GPPTS协议,分析了代数码本线性预测技术的编解码原理,并对其中的关键技术开环基音分析和固定码本搜索提出了优化方法。经过实验验证,改进后的算法降低了运算复杂度,并能获得良好的语音音质。 展开更多
关键词 自适应多速率 代数码本线性预测技术 码本搜索
原文传递
A comparison of genomic selection methods for breeding value prediction 被引量:8
16
作者 王欣 杨泽峰 徐辰武 《Science Bulletin》 SCIE EI CAS CSCD 2015年第10期925-935,I0007,共12页
Recent advances in molecular genetics techniques have made dense marker maps available, and the prediction of breeding value at the genome level has been employed in genetics research. However, an increasingly large n... Recent advances in molecular genetics techniques have made dense marker maps available, and the prediction of breeding value at the genome level has been employed in genetics research. However, an increasingly large number of markers raise both statistical and computational issues in genomic selection (GS), and many methods have been developed for genomic prediction to address these problems, including ridge regression-best linear unbiased prediction (RR-BLUP), genomic best linear unbiased prediction, BayesA, BayesB, BayesCπ, and Bayesian LASSO. In this paper, these methods were compared regarding inference under different conditions, using real data from a wheat data set and simulated scenarios with a small number of quantitative trait loci (QTL) (20), a moderate number of QTL (60, 180) and an extreme number of QTL (540). This study showed that the genetic architecture of a trait should be fully considered when a GS method is chosen. If a small amount of loci had a large effect on a trait, great differences were found between the predictive ability of various methods and BayesCπ was recommended. Although there was almost no significant difference between the predictive ability of BayesCπ andBayesB, BayesCπ is more feasible than BayesB for real data analysis. If a trait was controlled by a moderate number of genes, the absolute differences between the various methods were small, but BayesA was also found to be the most accurate method. Furthermore, BayesA was widely adaptable and could perform well with different numbers of QTL. If a trait was controlled by an extreme number of minor genes, almost no significant differences were detected between the predictive ability of various methods, but RR-BLUP slightly outperformed the others in both simulated scenarios and real data analysis, thus demonstrating its robustness and indicating that it was quite effective in this case. 展开更多
关键词 Prediction Genomic selection Breeding value Comparison Predictive ability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部