声纹鉴定是一项对语音的同一性问题作出判断的法庭科学技术。进行声纹鉴定的关键是尽可能多地提取有价值的语音特征。长时平均功率谱(LTAS,Long Term Average Spectrum)是语音的频谱特征之一,能够反映出一段语流中说话人的全部频率分量...声纹鉴定是一项对语音的同一性问题作出判断的法庭科学技术。进行声纹鉴定的关键是尽可能多地提取有价值的语音特征。长时平均功率谱(LTAS,Long Term Average Spectrum)是语音的频谱特征之一,能够反映出一段语流中说话人的全部频率分量,以及各频率分量与强度之间的关系,是表征个人语音特性的参量之一,可采用线性预测分析技术获得。通过系统实验,找出同一人发音LTAS的稳定性,不同人发音LTAS的差异性;并讨论信道、文本、语境、时长、噪音等因素对LTAS的影响;确定LTAS的应用范围和条件,以期为声纹鉴定实践工作提供新思路。展开更多
在动物全基因组关联分析(Genome-Wide Association Studies,GWAS)中,线性混合模型通过校正群体分层、个体间亲缘关系和微效多基因对标记关联检验的影响有效地控制了数量性状基因座(Quantitative Trait Locus,QTL)检测的假阳性率。文章...在动物全基因组关联分析(Genome-Wide Association Studies,GWAS)中,线性混合模型通过校正群体分层、个体间亲缘关系和微效多基因对标记关联检验的影响有效地控制了数量性状基因座(Quantitative Trait Locus,QTL)检测的假阳性率。文章综述了混合模型之于GWAS基因定位的求解策略和方法,包括逐个标记的GWAS方法和联合多标记的GWAS方法。评论了这些方法在计算效率、QTL检测效率和模型拟合度方面的优缺点。指出了完善的全基因组关联分析方法不仅能够高效率地检测QTL,还能够最优地拟合性状表型值和预测基因组育种值。展开更多
Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screen...Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screening procedure is used for selecting the skilful PCs as predictors used in the regression equation. The predictors include temperature at 850 hPa (7), the combination of sea-level pressure and temperature at 850 hPa (P+T) and the combination of geo-potential height and temperature at 850 hPa (H+T). The downscaling procedure is tested with the three predictors over three predictor domains. The optimum statistical model is obtained for each station and month by finding the predictor and predictor domain corresponding to the highest correlation. Finally, the optimum statistical downscaling models are applied to the Hadley Centre Coupled Model, version 3 (HadCM3) outputs under the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios to construct local future temperature change scenarios for each station and month, The results show that (1) statistical downscaling produces less warming than the HadCM3 output itself; (2) the downscaled annual cycles of temperature differ from the HadCM3 output, but are similar to the observation; (3) the downscaled temperature scenarios show more warming in the north than in the south; (4) the downscaled temperature scenarios vary with emission scenarios, and the A2 scenario produces more warming than the B2, especially in the north of China.展开更多
The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i...The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i.e., secular trends, cyclical variations, seasonal effects, and stochastic variations), they believe the best forecasting model is the one which realistically considers the underlying causal factors in a situational relationship and therefore has the best "track records" in generating data. Paper's models can be adjusted for variations in related a time series which processes a great deal of randomness, to improve the accuracy of the financial forecasts. Because of Na'fve forecasting models are based on an extrapolation of past values for future. These models may be adjusted for seasonal, secular, and cyclical trends in related data. When a data series processes a great deal of randomness, smoothing techniques, such as moving averages and exponential smoothing, may improve the accuracy of the financial forecasts. But neither Na'fve models nor smoothing techniques are capable of identifying major future changes in the direction of a situational data series. Hereby, nonlinear techniques, like direct and sequential search approaches, overcome those shortcomings can be used. The methodology which we have used is based on inferential analysis. To build the models to identify the major future changes in the direction of a situational data series, a comparative model building is applied. Hereby, the paper suggests using some of the nonlinear techniques, like direct and sequential search approaches, to reduce the technical shortcomings. The final result of the paper is to manipulate, to prepare, and to integrate heuristic non-linear searching methods to serve calculating adjusted factors to produce the best forecast data.展开更多
Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function ...Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function (RBF) neural networks and an extended Kalman filter (EKF).In this method chaos theory was used to model background noise.Noise was predicted by phase space reconstruction techniques and RBF neural networks in a synergistic manner.In the absence of a signal, prediction error stayed low and became relatively large when the input contained a signal.EKF was used to improve the convergence rate of the RBF neural network.Application of the scheme to different experimental data sets showed that the algorithm can detect signals hidden in strong noise even when the signal-to-noise ratio (SNR) is less than -40d B.展开更多
In the deregulated economy, the maximum load forecasting is important for the electric industry. Many applications are included such as the energy generation and purchasing. The aim of the present study is to find the...In the deregulated economy, the maximum load forecasting is important for the electric industry. Many applications are included such as the energy generation and purchasing. The aim of the present study is to find the most suitable models for the peak load of the Kingdom of Bahrain. Many mathematical methods have been developing for maximum load forecasting. In the present paper, the modeling of the maximum load, population and GDP (gross domestic product) versus years obtained. The curve fitting technique used to find that models, where Graph 4.4.2 as a tool used to find the models. As well, Neuro-Fuzzy used to find the three models. Therefore, three techniques are used. These three are exponential, linear modeling and Neuro-Fuzzy. It is found that, the Neuro-Fuzzy is the most suitable and realistic one. Then, the linear modeling is the next suitable one.展开更多
Recent advances in molecular genetics techniques have made dense marker maps available, and the prediction of breeding value at the genome level has been employed in genetics research. However, an increasingly large n...Recent advances in molecular genetics techniques have made dense marker maps available, and the prediction of breeding value at the genome level has been employed in genetics research. However, an increasingly large number of markers raise both statistical and computational issues in genomic selection (GS), and many methods have been developed for genomic prediction to address these problems, including ridge regression-best linear unbiased prediction (RR-BLUP), genomic best linear unbiased prediction, BayesA, BayesB, BayesCπ, and Bayesian LASSO. In this paper, these methods were compared regarding inference under different conditions, using real data from a wheat data set and simulated scenarios with a small number of quantitative trait loci (QTL) (20), a moderate number of QTL (60, 180) and an extreme number of QTL (540). This study showed that the genetic architecture of a trait should be fully considered when a GS method is chosen. If a small amount of loci had a large effect on a trait, great differences were found between the predictive ability of various methods and BayesCπ was recommended. Although there was almost no significant difference between the predictive ability of BayesCπ andBayesB, BayesCπ is more feasible than BayesB for real data analysis. If a trait was controlled by a moderate number of genes, the absolute differences between the various methods were small, but BayesA was also found to be the most accurate method. Furthermore, BayesA was widely adaptable and could perform well with different numbers of QTL. If a trait was controlled by an extreme number of minor genes, almost no significant differences were detected between the predictive ability of various methods, but RR-BLUP slightly outperformed the others in both simulated scenarios and real data analysis, thus demonstrating its robustness and indicating that it was quite effective in this case.展开更多
文摘声纹鉴定是一项对语音的同一性问题作出判断的法庭科学技术。进行声纹鉴定的关键是尽可能多地提取有价值的语音特征。长时平均功率谱(LTAS,Long Term Average Spectrum)是语音的频谱特征之一,能够反映出一段语流中说话人的全部频率分量,以及各频率分量与强度之间的关系,是表征个人语音特性的参量之一,可采用线性预测分析技术获得。通过系统实验,找出同一人发音LTAS的稳定性,不同人发音LTAS的差异性;并讨论信道、文本、语境、时长、噪音等因素对LTAS的影响;确定LTAS的应用范围和条件,以期为声纹鉴定实践工作提供新思路。
文摘在动物全基因组关联分析(Genome-Wide Association Studies,GWAS)中,线性混合模型通过校正群体分层、个体间亲缘关系和微效多基因对标记关联检验的影响有效地控制了数量性状基因座(Quantitative Trait Locus,QTL)检测的假阳性率。文章综述了混合模型之于GWAS基因定位的求解策略和方法,包括逐个标记的GWAS方法和联合多标记的GWAS方法。评论了这些方法在计算效率、QTL检测效率和模型拟合度方面的优缺点。指出了完善的全基因组关联分析方法不仅能够高效率地检测QTL,还能够最优地拟合性状表型值和预测基因组育种值。
基金supported by the National Natural Science Foundation of China under grant No.40705030the National Basic Research Program of China (Grant No.2006CB400504)
文摘Monthly mean temperatures at 562 stations in China are estimated using a statistical downscaling technique. The technique used is multiple linear regressions (MLRs) of principal components (PCs). A stepwise screening procedure is used for selecting the skilful PCs as predictors used in the regression equation. The predictors include temperature at 850 hPa (7), the combination of sea-level pressure and temperature at 850 hPa (P+T) and the combination of geo-potential height and temperature at 850 hPa (H+T). The downscaling procedure is tested with the three predictors over three predictor domains. The optimum statistical model is obtained for each station and month by finding the predictor and predictor domain corresponding to the highest correlation. Finally, the optimum statistical downscaling models are applied to the Hadley Centre Coupled Model, version 3 (HadCM3) outputs under the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios to construct local future temperature change scenarios for each station and month, The results show that (1) statistical downscaling produces less warming than the HadCM3 output itself; (2) the downscaled annual cycles of temperature differ from the HadCM3 output, but are similar to the observation; (3) the downscaled temperature scenarios show more warming in the north than in the south; (4) the downscaled temperature scenarios vary with emission scenarios, and the A2 scenario produces more warming than the B2, especially in the north of China.
文摘The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i.e., secular trends, cyclical variations, seasonal effects, and stochastic variations), they believe the best forecasting model is the one which realistically considers the underlying causal factors in a situational relationship and therefore has the best "track records" in generating data. Paper's models can be adjusted for variations in related a time series which processes a great deal of randomness, to improve the accuracy of the financial forecasts. Because of Na'fve forecasting models are based on an extrapolation of past values for future. These models may be adjusted for seasonal, secular, and cyclical trends in related data. When a data series processes a great deal of randomness, smoothing techniques, such as moving averages and exponential smoothing, may improve the accuracy of the financial forecasts. But neither Na'fve models nor smoothing techniques are capable of identifying major future changes in the direction of a situational data series. Hereby, nonlinear techniques, like direct and sequential search approaches, overcome those shortcomings can be used. The methodology which we have used is based on inferential analysis. To build the models to identify the major future changes in the direction of a situational data series, a comparative model building is applied. Hereby, the paper suggests using some of the nonlinear techniques, like direct and sequential search approaches, to reduce the technical shortcomings. The final result of the paper is to manipulate, to prepare, and to integrate heuristic non-linear searching methods to serve calculating adjusted factors to produce the best forecast data.
基金Supported by China Postdoctoral Science Foundation No.20080441183
文摘Detection of weak underwater signals is an area of general interest in marine engineering.A weak signal detection scheme was developed; it combined nonlinear dynamical reconstruction techniques, radial basis function (RBF) neural networks and an extended Kalman filter (EKF).In this method chaos theory was used to model background noise.Noise was predicted by phase space reconstruction techniques and RBF neural networks in a synergistic manner.In the absence of a signal, prediction error stayed low and became relatively large when the input contained a signal.EKF was used to improve the convergence rate of the RBF neural network.Application of the scheme to different experimental data sets showed that the algorithm can detect signals hidden in strong noise even when the signal-to-noise ratio (SNR) is less than -40d B.
文摘In the deregulated economy, the maximum load forecasting is important for the electric industry. Many applications are included such as the energy generation and purchasing. The aim of the present study is to find the most suitable models for the peak load of the Kingdom of Bahrain. Many mathematical methods have been developing for maximum load forecasting. In the present paper, the modeling of the maximum load, population and GDP (gross domestic product) versus years obtained. The curve fitting technique used to find that models, where Graph 4.4.2 as a tool used to find the models. As well, Neuro-Fuzzy used to find the three models. Therefore, three techniques are used. These three are exponential, linear modeling and Neuro-Fuzzy. It is found that, the Neuro-Fuzzy is the most suitable and realistic one. Then, the linear modeling is the next suitable one.
基金supported by the National Basic Research Program of China(2011CB100100)the Priority Academic Program Development of Jiangsu Higher Education Institutions+4 种基金the National Natural Science Foundations(31391632,31200943,and31171187)the National High-tech R&D Program(863 Program)(2014AA10A601-5)the Natural Science Foundations of Jiangsu Province(BK2012261)the Natural Science Foundation of the Jiangsu Higher Education Institutions(14KJA210005)the Innovative Research Team of Universities in Jiangsu Province
文摘Recent advances in molecular genetics techniques have made dense marker maps available, and the prediction of breeding value at the genome level has been employed in genetics research. However, an increasingly large number of markers raise both statistical and computational issues in genomic selection (GS), and many methods have been developed for genomic prediction to address these problems, including ridge regression-best linear unbiased prediction (RR-BLUP), genomic best linear unbiased prediction, BayesA, BayesB, BayesCπ, and Bayesian LASSO. In this paper, these methods were compared regarding inference under different conditions, using real data from a wheat data set and simulated scenarios with a small number of quantitative trait loci (QTL) (20), a moderate number of QTL (60, 180) and an extreme number of QTL (540). This study showed that the genetic architecture of a trait should be fully considered when a GS method is chosen. If a small amount of loci had a large effect on a trait, great differences were found between the predictive ability of various methods and BayesCπ was recommended. Although there was almost no significant difference between the predictive ability of BayesCπ andBayesB, BayesCπ is more feasible than BayesB for real data analysis. If a trait was controlled by a moderate number of genes, the absolute differences between the various methods were small, but BayesA was also found to be the most accurate method. Furthermore, BayesA was widely adaptable and could perform well with different numbers of QTL. If a trait was controlled by an extreme number of minor genes, almost no significant differences were detected between the predictive ability of various methods, but RR-BLUP slightly outperformed the others in both simulated scenarios and real data analysis, thus demonstrating its robustness and indicating that it was quite effective in this case.