Objective. To compare and match metabolic images of PET with anatomic images of CT and MRI. Methods. The CT or MRI images of the patients were obtained through a photo scanner, and then transferred to the remote works...Objective. To compare and match metabolic images of PET with anatomic images of CT and MRI. Methods. The CT or MRI images of the patients were obtained through a photo scanner, and then transferred to the remote workstation of PET scanner with a floppy disk. A fusion method was developed to match the 2- dimensional CT or MRI slices with the correlative slices of 3- dimensional volume PET images. Results. Twenty- nine metabolically changed foci were accurately localized in 21 epilepsy patients’ MRI images, while MRI alone had only 6 true positive findings. In 53 cancer or suspicious cancer patients, 53 positive lesions detected by PET were compared and matched with the corresponding lesions in CT or MRI images, in which 10 lesions were missed. On the other hand, 23 lesions detected from the patients’ CT or MRI images were negative or with low uptake in the PET images, and they were finally proved as benign. Conclusions. Comparing and matching metabolic images with anatomic images helped obtain a full understanding about the lesion and its peripheral structures. The fusion method was simple, practical and useful for localizing metabolically changed lesions.展开更多
The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These t...The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.展开更多
文摘Objective. To compare and match metabolic images of PET with anatomic images of CT and MRI. Methods. The CT or MRI images of the patients were obtained through a photo scanner, and then transferred to the remote workstation of PET scanner with a floppy disk. A fusion method was developed to match the 2- dimensional CT or MRI slices with the correlative slices of 3- dimensional volume PET images. Results. Twenty- nine metabolically changed foci were accurately localized in 21 epilepsy patients’ MRI images, while MRI alone had only 6 true positive findings. In 53 cancer or suspicious cancer patients, 53 positive lesions detected by PET were compared and matched with the corresponding lesions in CT or MRI images, in which 10 lesions were missed. On the other hand, 23 lesions detected from the patients’ CT or MRI images were negative or with low uptake in the PET images, and they were finally proved as benign. Conclusions. Comparing and matching metabolic images with anatomic images helped obtain a full understanding about the lesion and its peripheral structures. The fusion method was simple, practical and useful for localizing metabolically changed lesions.
文摘The aim of this study was to apply the existing techniques that enable examination ofmacadamia kernels to provide a better understanding of physico-chemical properties of kernels during postharvest processing. These techniques, such as X-ray tomography, could be applied for quality monitoring in the macadamia industry. The objectives of this study were to investigate the browning centre symptoms that usually occur in macadamia nuts-in-shell. The applied techniques included confocal microscopy, X-ray tomography and magnetic resonance imaging (MRI). Five different varieties of macadamia nuts (A38, 246, 816, 842 and Daddow) were selected to include distinct characteristics, such as drop pattern and growing location. Analysis of the microstructure of kernels by confocal microscopy showed the distribution of possible brown pigment compounds as well as the distribution of lipids, carbohydrates and proteins inside macadamia cells. Physical properties data, including shell density and seed to volume ratio, were obtained by X-ray tomography. Magnetic resonance diffusion tensor imaging used in this study showed marked differences in microstructure which indicate that different varieties exhibit different microstructures expressed as fraction ofanisotropy and apparent diffusion coefficient that appear to be related to the occurrence of the brown centre. Hence, the findings of this study have potential to improve the existing postharvest techniques used in the macadamia processing industry. They will be of benefit to the industry in terms of improved quality control and cost reduction.