Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consum...Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control(CMPC)strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The controllers connected with two kinds of communication networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reasonable CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.展开更多
While many techniques have been developed for the design of different types of antennas,such as wire antenna,patch antenna,lenses,and reflectors,these cannot be said general-purpose strategies for the synthesis and de...While many techniques have been developed for the design of different types of antennas,such as wire antenna,patch antenna,lenses,and reflectors,these cannot be said general-purpose strategies for the synthesis and design of antennas to achieve the performance characteristics specified by users.Recently,there has been an increasing need for the development of antenna design techniques because of the advent of 5 G and a variety of space,defense,biological,and similar applications,for which a robust and general-purpose design tool is not to be developed.The main objective of this study is to take a look at antenna design from the field manipulation point of view,which has the potential to partially fulfill this need.We review the existing field manipulation techniques,including field transformation methods based on Maxwell’s and wave equations,point out some limitations of these techniques,and then present ways to improve the performance of these methods.Next,we introduce an alternative approach for field manipulation based on two-dimensional(2 D)metasurfaces,and present laws of the generalized reflection and refraction that are based on 2 D surface electromagnetics.Then,we explore how to overcome the limitations of conventional reflection and refraction processes that are strictly bounded by the critical angle.Finally,we provide some application examples of field manipulation methods in the antenna design,with a view on developing a general-purpose strategy for antenna design for future communication.展开更多
文摘Tube furnaces are essential and primary energy intensive facilities in petrochemical plants. Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission. Inspired by this idea, this paper presents a composite model predictive control(CMPC)strategy, which, taking advantage of distributed model predictive control architectures, combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions. The controllers connected with two kinds of communication networks are easy to organize and maintain, and stable to process interferences. A fast solution algorithm combining interior point solvers and Newton's method is accommodated to the CMPC realization, with reasonable CPU computing time and suitable online applications. Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces, improve heat efficiency, and reduce the emission effectively.
基金Project supported by the National Natural Science Foundation of China(No.61971335).
文摘While many techniques have been developed for the design of different types of antennas,such as wire antenna,patch antenna,lenses,and reflectors,these cannot be said general-purpose strategies for the synthesis and design of antennas to achieve the performance characteristics specified by users.Recently,there has been an increasing need for the development of antenna design techniques because of the advent of 5 G and a variety of space,defense,biological,and similar applications,for which a robust and general-purpose design tool is not to be developed.The main objective of this study is to take a look at antenna design from the field manipulation point of view,which has the potential to partially fulfill this need.We review the existing field manipulation techniques,including field transformation methods based on Maxwell’s and wave equations,point out some limitations of these techniques,and then present ways to improve the performance of these methods.Next,we introduce an alternative approach for field manipulation based on two-dimensional(2 D)metasurfaces,and present laws of the generalized reflection and refraction that are based on 2 D surface electromagnetics.Then,we explore how to overcome the limitations of conventional reflection and refraction processes that are strictly bounded by the critical angle.Finally,we provide some application examples of field manipulation methods in the antenna design,with a view on developing a general-purpose strategy for antenna design for future communication.