期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
单元液体发射药高压线燃速测定
1
作者 余永刚 周彦煌 +1 位作者 陆欣 刘东尧 《南京理工大学学报》 EI CAS CSCD 2000年第4期311-313,共3页
液体发射药燃速是影响液体发射药燃烧性能的关键参数之一。该文设计了单元液体发射药高压线燃速试验装置 ,利用包覆火药柱在密闭爆发器中燃烧产生恒压环境 ,借助离子探针测速技术定量测试OTTO Ⅱ在 45~ 83MPa范围内的线燃速。结果表明 ... 液体发射药燃速是影响液体发射药燃烧性能的关键参数之一。该文设计了单元液体发射药高压线燃速试验装置 ,利用包覆火药柱在密闭爆发器中燃烧产生恒压环境 ,借助离子探针测速技术定量测试OTTO Ⅱ在 45~ 83MPa范围内的线燃速。结果表明 ,它满足指数燃速公式 ,并算出了相应的燃速系数和燃速指数。研究结果对再生式液体发射药火炮内弹道设计有重要价值。 展开更多
关键词 液体发射药 试验装置 液体发射药火炮 线燃速
下载PDF
密闭自升压式固体推进剂动态燃速的测试方法 被引量:4
2
作者 刘科祥 赵露 李博 《火炸药学报》 EI CAS CSCD 北大核心 2014年第1期78-81,共4页
提出了密闭自升压式固体推进剂动态燃速的快速测试方法,并建立了测试系统。将多条靶线穿过的固体推进剂药条置于密闭燃烧室内,施加初压并点燃,实时测量燃烧室内的压强和温度变化,同时记录各靶线烧断的时刻,利用靶距、燃烧时间间隔、压... 提出了密闭自升压式固体推进剂动态燃速的快速测试方法,并建立了测试系统。将多条靶线穿过的固体推进剂药条置于密闭燃烧室内,施加初压并点燃,实时测量燃烧室内的压强和温度变化,同时记录各靶线烧断的时刻,利用靶距、燃烧时间间隔、压强变化、温度变化及时间对应关系,可以计算出燃速曲线和压强指数。与常用的燃速测试方法相比,该方法具有快速、高效的优点。 展开更多
关键词 物理化学 固体推进剂 动态 多靶线燃速测试技术 压强指数
下载PDF
金属粉对NC/TMETN/FOX-7低敏感改性双基推进剂燃烧性能的影响 被引量:5
3
作者 李军强 何俊武 +2 位作者 张超 王江宁 杨立波 《火炸药学报》 EI CAS CSCD 北大核心 2019年第1期84-88,I0005,共6页
采用燃速-靶线法研究了铝粉(Al)、镁铝合金粉(Mg-Al)和硼粉(B)以及铝粉含量、粒度等对NC/TMETN/FOX-7改性双基推进剂燃烧性能(燃速和压强指数)的影响;采用单幅放大彩色摄影法研究了其火焰结构。结果表明,推进剂配方中添加金属粉可提高NC... 采用燃速-靶线法研究了铝粉(Al)、镁铝合金粉(Mg-Al)和硼粉(B)以及铝粉含量、粒度等对NC/TMETN/FOX-7改性双基推进剂燃烧性能(燃速和压强指数)的影响;采用单幅放大彩色摄影法研究了其火焰结构。结果表明,推进剂配方中添加金属粉可提高NC/TMETN/FOX-7改性双基推进剂的燃速,金属粉使推进剂燃速的增大幅度由大到小依次为:Al-Mg>Al>B;随着Al粉(粒径12.5μm)质量分数由0增至10%,NC/TMETN/FOX-7推进剂的燃速先增大后减小,当铝粉质量分数为5%时推进剂燃速最高,达到21.19mm/s;NC/TMETN/FOX-7改性双基推进剂的燃速随着铝粉粒度的增大而增大,铝粉粒径由12.5μm增至45μm时,10MPa下推进剂的燃速由21.19mm/s增至24.47mm/s,8~14MPa的压强指数降至0.20以下;NC/TMETN/FOX-7推进剂的火焰结构与NC/NG基推进剂相似,由预热区、亚表面及表面区、暗区和火焰区组成,各区之间的界限不明显。 展开更多
关键词 物理化学 改性双基推进剂 压强指数 TMETN 金属粉 FOX-7 -靶线
下载PDF
On the Pressure Drop and the Velocity Distribution in the Cylindrical Vortex Chamber with Two Inlet Pipes for the Control of Vortex Flow 被引量:3
4
作者 Akira OGAWA Tutomu OONO +2 位作者 Hayato OKABE Noriaki AKIBA Taketo OOYAGI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2005年第2期162-171,共10页
Vortex flow is applied to a cyclone dust collector, a vortex combustion chamber, and a vortex diode for vortex control. In order to apply the vortex flow to the industries, it is necessary to keep the stable flow cond... Vortex flow is applied to a cyclone dust collector, a vortex combustion chamber, and a vortex diode for vortex control. In order to apply the vortex flow to the industries, it is necessary to keep the stable flow condition and to estimate the response time of the transient flow process and also the intensity of the vortex flow. For control vortex flow, two types of vortex chamber with two inlet pipes were designed. One of them is to promote the vortex flow named as Co-Rotating Flow System and another one is to hinder the vortex flow named as Counter-Rotating Flow System. The pressure drops and the velocity distributions were measured for these vortex chambers. The estimation of the tangential velocity by the application of the angular momentum flux is compared with the measured velocity by a cylindrical Pitot-tube. The characteristics of the total pressure drop could be explained by introducing the circulation. 展开更多
关键词 vortex chamber tangential velocity total and local pressure drops angular momentum flux circulation.
原文传递
Hysteresis and Multi-state Behavior of Counterflow Flame in a Blowing Cylindrical Burner
5
作者 Hsing-Sheng Chai 《Journal of Thermal Science》 SCIE EI CAS CSCD 2009年第3期276-283,共8页
This study focuses on flame hysteresis over a porous cylindrical burner. The hysteresis results from different operation procedure of the experiment. Gradually increasing inflow velocity can transform the envelope fla... This study focuses on flame hysteresis over a porous cylindrical burner. The hysteresis results from different operation procedure of the experiment. Gradually increasing inflow velocity can transform the envelope flame into a wake flame. The blow-off curve can be plotted by determining every critical inflow velocity that makes an envelope flame become a wake flame at different fuel-ejection velocities. In contrast, decreasing the inflow veiocity can transform the wake or lift-off flame into an envelope one. The reattachment curve can be obtained by the same method to explore the blow-off curve, but the intake process is reverse. However, these two curves are not coincident, except the origin. The discrepancy between them is termed as hysteresis, and it results from the difference between the burning velocities associated with both curves. At the lowest fuel-ejection velocity, no hysteresis exists between both curves owing to nearly no burning velocity difference there. Then, raising the fuel-ejection velocity enhances hysteresis and the discrepancy between the two curves. However, as fuel-ejection velocity exceeds a critical value, the intensity of hysteresis almost keeps constant and causes the two curves to be parallel to each other. 展开更多
关键词 HYSTERESIS Blow-off curve Reattachment curve Cylindrical burner Counterflow flame
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部