A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the...A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.展开更多
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s...Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.展开更多
For the problem of deterministic parameter estimate, the theoretical lower bound of esti- mate error is the Cramér-Rao bound; while for random parameter, the lower bound of estimate error is generally termed by P...For the problem of deterministic parameter estimate, the theoretical lower bound of esti- mate error is the Cramér-Rao bound; while for random parameter, the lower bound of estimate error is generally termed by Posterior Cramér-Rao Bound (PCRB). Under the background of passive tracking where the target's state can be seen as a time-varying random parameter, PCRB of the state estimate error is analyzed in this paper, and the relation between PCRB and varied condition is also fully in- vestigated using different simulation examples. The presented analytical method provides a theoretical base for performance assessment of all kinds of suboptimal estimate algorithms used in practice.展开更多
Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource ...Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource intensive and high-cost. Camera tracking is an effective location tracking way for those emerging applications which can reuse the existing ubiquitous video monitoring system. This paper proposes a dynamic community-based camera collaboration(D3C) framework for target location and tracking. The contributions of D3C mainly include that(1) nonlinear perspective projection model is selected as the camera sensing model and sequential Monte Carlo is employed to predict the target location;(2) a dynamic collaboration scheme is proposed, it is based on the local community-detection theory deriving from social network analysis. The performance of proposed approach is validated by both synthetic datasets and real-world application. The experiment results show that D3C meets the versatility, real-time and fault tolerance requirements of target tracking applications.展开更多
A precise localization for mobile target in wireless sensor networks is presented in this letter,where a geometrical relationship is explored to improve the location estimation for mobile target,in-stead of a simple c...A precise localization for mobile target in wireless sensor networks is presented in this letter,where a geometrical relationship is explored to improve the location estimation for mobile target,in-stead of a simple centroid approach.The equations of location compensation algorithm for mobiletarget are derived based on linear trajectory prediction and sensor selective activation.The resultsbased on extensive simulation experiments show that the compensation algorithm gets better per-formance in metrics of quality of tracking and energy efficiency with the change of sensor sensing range,the ratio of sensing range and sensor activation range,and the data sampling rate than traditionalmethods,which means our proposing can achieve better quality-energy tradeoff for mobile target inwireless sensor networks.展开更多
In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival ...In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival (DOA) tracking algorithms. On the other hand, although the DOA estimation methods based on the Maximum Likelihood (ML) principle have higher resolution than the beamforming and the subspace based methods, prohibitively heavy computation limits their practical applications. This letter first proposes a new suboptimal DOA estimation algorithm that combines the advantages of the lower complexity of subspace algorithm and the high accuracy of ML based algo- rithms, and then proposes a Kalman filtering based tracking algorithm to model the dynamic property of directional changes for mobile terminals in such a way that the association between the estimates made at different time points is maintained. At each stage during tracking process, the current suboptimal estimates of DOA are treated as measurements, predicted and updated via a Kalman state equation, hence adaptive tracking of moving MS can be carried out without the need to perform unduly heavy computations. Computer simulation results show that this proposed algorithm has better per- formance of DOA estimation and tracking of MS than the conventional ML or subspace based algo- rithms in terms of accuracy and robustness.展开更多
To study the problem of obstacle detection based on multi-sensors data fusion,the multi-target tracking theory and techniques are introduced into obstacle detection systems,and the exact position of obstacle can be de...To study the problem of obstacle detection based on multi-sensors data fusion,the multi-target tracking theory and techniques are introduced into obstacle detection systems,and the exact position of obstacle can be determined.Data fusion problems are discussed directly based on achievable data from some sensors without considering the specific structure of each individual sensor.With respect to normal linear systems and nonlinear systems,the corresponding algorithms are proposed.The validity of the method is confirmed by simulation results.展开更多
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation, ChinaProject(NCET-06-0686) supported by Program for New Century Excellent Talents in UniversityProject(IRT0661) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.
基金Projects(90820302,60805027)supported by the National Natural Science Foundation of ChinaProject(200805330005)supported by the Research Fund for the Doctoral Program of Higher Education,ChinaProject(2009FJ4030)supported by Academician Foundation of Hunan Province,China
文摘Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection.
文摘For the problem of deterministic parameter estimate, the theoretical lower bound of esti- mate error is the Cramér-Rao bound; while for random parameter, the lower bound of estimate error is generally termed by Posterior Cramér-Rao Bound (PCRB). Under the background of passive tracking where the target's state can be seen as a time-varying random parameter, PCRB of the state estimate error is analyzed in this paper, and the relation between PCRB and varied condition is also fully in- vestigated using different simulation examples. The presented analytical method provides a theoretical base for performance assessment of all kinds of suboptimal estimate algorithms used in practice.
基金supported by National Natural Science Foundation of China (Grant No. 61501048) National High-tech R&D Program of China (863 Program) (Grant No. 2013AA102301)+1 种基金The Fundamental Research Funds for the Central Universities (Grant No. 2017RC12) China Postdoctoral Science Foundation funded project (Grant No.2016T90067, 2015M570060)
文摘Mobile target tracking is a necessary function of some emerging application domains, such as virtual reality, smart home and intelligent healthcare. However, existing portable devices for target tracking are resource intensive and high-cost. Camera tracking is an effective location tracking way for those emerging applications which can reuse the existing ubiquitous video monitoring system. This paper proposes a dynamic community-based camera collaboration(D3C) framework for target location and tracking. The contributions of D3C mainly include that(1) nonlinear perspective projection model is selected as the camera sensing model and sequential Monte Carlo is employed to predict the target location;(2) a dynamic collaboration scheme is proposed, it is based on the local community-detection theory deriving from social network analysis. The performance of proposed approach is validated by both synthetic datasets and real-world application. The experiment results show that D3C meets the versatility, real-time and fault tolerance requirements of target tracking applications.
基金the Joint Funds of Guangdong-NSFC(U0735003)the National Natural Science Foundation of China(No.60604029,60702081)+2 种基金the Natural ScienceFoundation of Zhejiang Province(No.Y106384)the Sci-ence and Technology Project of Zhejiang Province(No.2007C31038)and the Scientific Research Fund of Zhejiang Provincial Education(No.20061345).
文摘A precise localization for mobile target in wireless sensor networks is presented in this letter,where a geometrical relationship is explored to improve the location estimation for mobile target,in-stead of a simple centroid approach.The equations of location compensation algorithm for mobiletarget are derived based on linear trajectory prediction and sensor selective activation.The resultsbased on extensive simulation experiments show that the compensation algorithm gets better per-formance in metrics of quality of tracking and energy efficiency with the change of sensor sensing range,the ratio of sensing range and sensor activation range,and the data sampling rate than traditionalmethods,which means our proposing can achieve better quality-energy tradeoff for mobile target inwireless sensor networks.
文摘In wireless communication environment, the time-varying channel and angular spreads caused by multipath fading and the mobility of Mobile Stations (MS) degrade the performance of the conventional Direction-Of-Arrival (DOA) tracking algorithms. On the other hand, although the DOA estimation methods based on the Maximum Likelihood (ML) principle have higher resolution than the beamforming and the subspace based methods, prohibitively heavy computation limits their practical applications. This letter first proposes a new suboptimal DOA estimation algorithm that combines the advantages of the lower complexity of subspace algorithm and the high accuracy of ML based algo- rithms, and then proposes a Kalman filtering based tracking algorithm to model the dynamic property of directional changes for mobile terminals in such a way that the association between the estimates made at different time points is maintained. At each stage during tracking process, the current suboptimal estimates of DOA are treated as measurements, predicted and updated via a Kalman state equation, hence adaptive tracking of moving MS can be carried out without the need to perform unduly heavy computations. Computer simulation results show that this proposed algorithm has better per- formance of DOA estimation and tracking of MS than the conventional ML or subspace based algo- rithms in terms of accuracy and robustness.
基金Sponsored by the Science Foundation for Youths of Heilongjiang Province(Grant No.QC08C05)
文摘To study the problem of obstacle detection based on multi-sensors data fusion,the multi-target tracking theory and techniques are introduced into obstacle detection systems,and the exact position of obstacle can be determined.Data fusion problems are discussed directly based on achievable data from some sensors without considering the specific structure of each individual sensor.With respect to normal linear systems and nonlinear systems,the corresponding algorithms are proposed.The validity of the method is confirmed by simulation results.