Fault tolerance in microprocessor systems has become a popular topic of architecture research. Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance archit...Fault tolerance in microprocessor systems has become a popular topic of architecture research. Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance architectures have been proposed. But little attention is paid to the thread level superscalar fault tolerance. This letter introduces microthread concept into superscalar processor fault tolerance domain, and puts forward a novel fault tolerance architecture, namely, MicroThread Based (MTB) coarse grained transient fault tolerance superscalar processor architecture, then discusses some detailed implementations.展开更多
Many applications require the solution of large nonsymmetric linear systems with multiple right hand sides. Instead of applying an iterative method to each of these systems individually, it is often more efficient to...Many applications require the solution of large nonsymmetric linear systems with multiple right hand sides. Instead of applying an iterative method to each of these systems individually, it is often more efficient to use a block version of the method that generates iterates for all the systems simultaneously. In this paper, we propose a block version of generalized minimum backward (GMBACK) for solving large multiple nonsymmetric linear systems. The new method employs the block Arnoldi process to construct a basis for the Krylov subspace K m(A, R 0) and seeks X m∈X 0+K m(A, R 0) to minimize the norm of the perturbation to the data given in A.展开更多
文摘Fault tolerance in microprocessor systems has become a popular topic of architecture research. Much work has been done at different levels to accomplish reliability against soft errors, and some fault tolerance architectures have been proposed. But little attention is paid to the thread level superscalar fault tolerance. This letter introduces microthread concept into superscalar processor fault tolerance domain, and puts forward a novel fault tolerance architecture, namely, MicroThread Based (MTB) coarse grained transient fault tolerance superscalar processor architecture, then discusses some detailed implementations.
文摘Many applications require the solution of large nonsymmetric linear systems with multiple right hand sides. Instead of applying an iterative method to each of these systems individually, it is often more efficient to use a block version of the method that generates iterates for all the systems simultaneously. In this paper, we propose a block version of generalized minimum backward (GMBACK) for solving large multiple nonsymmetric linear systems. The new method employs the block Arnoldi process to construct a basis for the Krylov subspace K m(A, R 0) and seeks X m∈X 0+K m(A, R 0) to minimize the norm of the perturbation to the data given in A.