GRAPES(global/regional assimilation and prediction system)数值天气预报模式作为地球大气一个典型的非线性化离散系统,计算量非常巨大,因此利用低成本、低功耗和高性能的GPU对GRAPES模式进行并行加速成为目前的研究热点.首先通过实...GRAPES(global/regional assimilation and prediction system)数值天气预报模式作为地球大气一个典型的非线性化离散系统,计算量非常巨大,因此利用低成本、低功耗和高性能的GPU对GRAPES模式进行并行加速成为目前的研究热点.首先通过实现GRAPES模式在GPU中的并行加速,发现系统性能提升并不理想.在此基础上,提出了性能优化策略,包括缓解数据传输时间、降低设备内存加载和存储的数量和避免线程控制流分支,实验结果表明,利用GPU的性能优化策略有效地提升了GRAPES系统性能.展开更多
Peristaltic flow of a conducting Jeffrey fluid in an inclined asymmetric channel is investigated. The channel asymmetry is produced by considering a peristaltic wave train on the flexible walls of the channel with dif...Peristaltic flow of a conducting Jeffrey fluid in an inclined asymmetric channel is investigated. The channel asymmetry is produced by considering a peristaltic wave train on the flexible walls of the channel with different amplitudes and phases. The nonlinear governing equations are solved analytically by a perturbation technique. The expressions for the stream function, axial velocity and the pressure rise per wavelength are determined in terms of the Jeffrey number λ1, the Froude number Fr, the perturbation parameter 5, the angle of inclination θ and the phase difference Ф. Effects of the physical parameters on the velocity field and the pumping characteristics are discussed. It is observed that the size of the trapping bolus increase with an increase in the magnetic parameter and the volume flow rate. That is, the magnetic parameter and the volume flow rate have strong influence on the trapping bolus phenomenon.展开更多
文摘GRAPES(global/regional assimilation and prediction system)数值天气预报模式作为地球大气一个典型的非线性化离散系统,计算量非常巨大,因此利用低成本、低功耗和高性能的GPU对GRAPES模式进行并行加速成为目前的研究热点.首先通过实现GRAPES模式在GPU中的并行加速,发现系统性能提升并不理想.在此基础上,提出了性能优化策略,包括缓解数据传输时间、降低设备内存加载和存储的数量和避免线程控制流分支,实验结果表明,利用GPU的性能优化策略有效地提升了GRAPES系统性能.
文摘Peristaltic flow of a conducting Jeffrey fluid in an inclined asymmetric channel is investigated. The channel asymmetry is produced by considering a peristaltic wave train on the flexible walls of the channel with different amplitudes and phases. The nonlinear governing equations are solved analytically by a perturbation technique. The expressions for the stream function, axial velocity and the pressure rise per wavelength are determined in terms of the Jeffrey number λ1, the Froude number Fr, the perturbation parameter 5, the angle of inclination θ and the phase difference Ф. Effects of the physical parameters on the velocity field and the pumping characteristics are discussed. It is observed that the size of the trapping bolus increase with an increase in the magnetic parameter and the volume flow rate. That is, the magnetic parameter and the volume flow rate have strong influence on the trapping bolus phenomenon.