期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
刍议小学语文“预测阅读法” 的培养——以部编教材三年级上册预测阅读策略单元为例
1
作者 杨英 《学生·家长·社会》 2020年第3期160-161,共2页
本论文探讨了部编教材小学语文“预测阅读法”的培养。预测阅读法就是阅读主体在阅读过程中,根据文本现有信息,按照已有信息、文章规律、阅读经验、生活常识,对下文进行推测的行为。在阅读的基础上进行预测,又在阅读中检验预测,从而培... 本论文探讨了部编教材小学语文“预测阅读法”的培养。预测阅读法就是阅读主体在阅读过程中,根据文本现有信息,按照已有信息、文章规律、阅读经验、生活常识,对下文进行推测的行为。在阅读的基础上进行预测,又在阅读中检验预测,从而培养学生的阅读方法,提高学生的阅读能力。 展开更多
关键词 预测阅读法 线索预测 封面预测 截页预测 结尾预测
下载PDF
“睡美人”文献的重要特征、预测线索与政策启示 被引量:22
2
作者 杜建 武夷山 《科学学研究》 CSSCI CSCD 北大核心 2018年第11期1938-1945,共8页
睡美人文献研究对于图书馆界文献战略保藏、科技界早期识别变革性研究与缩短重大科学发现的认可时滞具有重要意义。通过数据分析和案例研究揭示了睡美人文献具有多出自跨学科研究和综合性期刊、多具有潜在技术与应用属性、多为高质量研... 睡美人文献研究对于图书馆界文献战略保藏、科技界早期识别变革性研究与缩短重大科学发现的认可时滞具有重要意义。通过数据分析和案例研究揭示了睡美人文献具有多出自跨学科研究和综合性期刊、多具有潜在技术与应用属性、多为高质量研究三大特征。初步凝练出预测睡美人文献的若干关键线索:一是识别变革性研究并追踪其技术转化应用状况,包括监测作者是否持续开展该主题的研究,是否从理论研究拓展到实践研究,实践中是否成功等;论文发表之后是否有专利授权,论文是否被专利引用等。二是笔者提出的一个用于识别非高被引论文中睡美人文献的无参数指标——Bcp指数,能够识别出那些正处于"沉睡-唤醒"萌芽期的论文,特别是长期沉睡后初现被引突增苗头,且总被引次数尚未成规模的论文。基于睡美人文献重要特征与预测线索的分析,从加强变革性研究、识别研究前沿和改善学术评价三个方面讨论了睡美人文献研究的政策启示。 展开更多
关键词 睡美人文献 变革性研究 专利引用 预测线索 研究前沿 学术评价
原文传递
Fortified Financial Forecasting Models Based on Non-Linear Searching Approaches
3
作者 Mohammad R. Hamidizadeh Mohammad E. Fadaeinejad 《Journal of Modern Accounting and Auditing》 2012年第2期232-240,共9页
The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i... The paper's aim is how to forecast data with variations involving at times series data to get the best forecasting model. When researchers are going to forecast data with variations involving at times series data (i.e., secular trends, cyclical variations, seasonal effects, and stochastic variations), they believe the best forecasting model is the one which realistically considers the underlying causal factors in a situational relationship and therefore has the best "track records" in generating data. Paper's models can be adjusted for variations in related a time series which processes a great deal of randomness, to improve the accuracy of the financial forecasts. Because of Na'fve forecasting models are based on an extrapolation of past values for future. These models may be adjusted for seasonal, secular, and cyclical trends in related data. When a data series processes a great deal of randomness, smoothing techniques, such as moving averages and exponential smoothing, may improve the accuracy of the financial forecasts. But neither Na'fve models nor smoothing techniques are capable of identifying major future changes in the direction of a situational data series. Hereby, nonlinear techniques, like direct and sequential search approaches, overcome those shortcomings can be used. The methodology which we have used is based on inferential analysis. To build the models to identify the major future changes in the direction of a situational data series, a comparative model building is applied. Hereby, the paper suggests using some of the nonlinear techniques, like direct and sequential search approaches, to reduce the technical shortcomings. The final result of the paper is to manipulate, to prepare, and to integrate heuristic non-linear searching methods to serve calculating adjusted factors to produce the best forecast data. 展开更多
关键词 Naive forecasting models smoothing techniques Fibonacci and Golden section search line search bycurve fit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部