According to the fact that the secondary users' delay requirements for data transmission are not unitary in cognitive radio networks, the secondary users are divided into two classes, denoted by SU1 and SU2, respecti...According to the fact that the secondary users' delay requirements for data transmission are not unitary in cognitive radio networks, the secondary users are divided into two classes, denoted by SU1 and SU2, respectively. It is assumed that SU1 has a higher priority to occupy the primary users' unutilized channels than SU2. A preemptive resume priority M/G/1 queuing network is used to model the multiple spectrum handoffs processing. By using a state transition probability matrix and a cost matrix, the average cumulative delays of SU1 and SU2 are calculated, respectively. Numerical results show that the more the primary user's traffic load, the more rapidly the SU2's cumulative handoff delay grows. Compared with the networks where secondary users are unitary, the lower the SUI's arrival rate, the more obviously both SUI's and SU2's handoff delays decrease. The admission access regions limited by the maximum tolerable delay can also facilitate the design of admission control rules for graded secondary users.展开更多
Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree...Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree distribution,but also the scaling clustering coefficient property which Barabási-Albert(BA)model does not have.BA model is a model of network growth based on growth and preferential attachment,showing the scale-free degree distribution property.In this paper,we study the evolution of cooperation on a hierarchical network model,adopting the prisoner's dilemma(PD)game and snowdrift game(SG)as metaphors of the interplay between connected nodes.BA model provides a unifying framework for the emergence of cooperation.But interestingly,we found that on hierarchical model,there is no sign of cooperation for PD game,while the fre-quency of cooperation decreases as the common benefit decreases for SG.By comparing the scaling clustering coefficient prop-erties of the hierarchical network model with that of BA model,we found that the former amplifies the effect of hubs.Considering different performances of PD game and SG on complex network,we also found that common benefit leads to cooperation in the evolution.Thus our study may shed light on the emergence of cooperation in both natural and social environments.展开更多
基金The National Natural Science Foundation of China(No.60972026,61271207)the National Science and Technology Major Project(No.2010ZX03006-002-01)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(No.20090092110009)the Specialized Development Foundation for the Achievement Transformation of Jiangsu Province(No.BA2010023)
文摘According to the fact that the secondary users' delay requirements for data transmission are not unitary in cognitive radio networks, the secondary users are divided into two classes, denoted by SU1 and SU2, respectively. It is assumed that SU1 has a higher priority to occupy the primary users' unutilized channels than SU2. A preemptive resume priority M/G/1 queuing network is used to model the multiple spectrum handoffs processing. By using a state transition probability matrix and a cost matrix, the average cumulative delays of SU1 and SU2 are calculated, respectively. Numerical results show that the more the primary user's traffic load, the more rapidly the SU2's cumulative handoff delay grows. Compared with the networks where secondary users are unitary, the lower the SUI's arrival rate, the more obviously both SUI's and SU2's handoff delays decrease. The admission access regions limited by the maximum tolerable delay can also facilitate the design of admission control rules for graded secondary users.
基金Project supported by the Natural Science Foundation of ZhejiangProvince, China (No. Y105697)the Ningbo Natural ScienceFoundation,China (No. 2005A610004)
文摘Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree distribution,but also the scaling clustering coefficient property which Barabási-Albert(BA)model does not have.BA model is a model of network growth based on growth and preferential attachment,showing the scale-free degree distribution property.In this paper,we study the evolution of cooperation on a hierarchical network model,adopting the prisoner's dilemma(PD)game and snowdrift game(SG)as metaphors of the interplay between connected nodes.BA model provides a unifying framework for the emergence of cooperation.But interestingly,we found that on hierarchical model,there is no sign of cooperation for PD game,while the fre-quency of cooperation decreases as the common benefit decreases for SG.By comparing the scaling clustering coefficient prop-erties of the hierarchical network model with that of BA model,we found that the former amplifies the effect of hubs.Considering different performances of PD game and SG on complex network,we also found that common benefit leads to cooperation in the evolution.Thus our study may shed light on the emergence of cooperation in both natural and social environments.