提出了基于多尺度线调频基信号稀疏分解(Multi-scale Chirplet Sparse Signal Decomposition,简称MCSSD)的转子碰摩故障早期检测方法,该方法用MCSSD方法对转子碰摩故障振动信号进行单次分解,从原信号中分离出具有最大幅值的工频(或倍频...提出了基于多尺度线调频基信号稀疏分解(Multi-scale Chirplet Sparse Signal Decomposition,简称MCSSD)的转子碰摩故障早期检测方法,该方法用MCSSD方法对转子碰摩故障振动信号进行单次分解,从原信号中分离出具有最大幅值的工频(或倍频)信号分量。由于MCSSD方法是采用线性直线逐段自适应逼近分析信号的各分量频率,分解得到的信号分量与真实信号分量具有很好的频率匹配特性,不会产生频率混叠现象,因此,与小波分解与EMD分解相比,MCSSD能更有效地从转子早期碰摩故障振动信号分离出最具最大幅值的工频(或倍频)信号分量。将该信号分量从原信号中去除,对残余信号分量做频谱分析,即可有效诊断转子早期碰摩故障。应用实例证明了该方法的有效性和优越性。展开更多
A novel M-ary chirp modulation technique based on an optimal chirp signal design is proposed in this paper to offer higher data rate for an indoor wireless chirp spread spectrum communication system. Both linear chirp...A novel M-ary chirp modulation technique based on an optimal chirp signal design is proposed in this paper to offer higher data rate for an indoor wireless chirp spread spectrum communication system. Both linear chirp signals and combined chirp signals are used in this system to reduce the effect of the cross correlation, and simplify the complexity of the system. The optimal scheme of de- signing both linear chirp signals and combined chirp signals is discussed to minimize the value of the cross correlation and obtain a better system performance. Simulation results show that, compared with the binary orthogonal chirp modulation technique, the M-ary chirp modulation technique based on an optimal chirp signal set has a higher data rate with a reasonable bit-error rate (BER) perform- ance under both additive white gaussian noise (AWGN) channel and indoor wireless channel.展开更多
In order to suppress the fast decrease of the transfer efficiency of magnetic resonance coupled wireless power transfer system(MRCWPTS) with distance increase,this paper investigates the impact factors of the system t...In order to suppress the fast decrease of the transfer efficiency of magnetic resonance coupled wireless power transfer system(MRCWPTS) with distance increase,this paper investigates the impact factors of the system transfer efficiency and is,then formulates a new efficiency optimal control method based on frequency control.Based upon this control method two optimal control schemes are designed to achieve transfer efficiency control of the system.Simulations and experiments show that the proposed efficiency optimal control method can effectively stabilize the system transfer efficiency in a certain range so as to successfully solve the subtle issue of transfer efficiency variation with distance.展开更多
文摘提出了基于多尺度线调频基信号稀疏分解(Multi-scale Chirplet Sparse Signal Decomposition,简称MCSSD)的转子碰摩故障早期检测方法,该方法用MCSSD方法对转子碰摩故障振动信号进行单次分解,从原信号中分离出具有最大幅值的工频(或倍频)信号分量。由于MCSSD方法是采用线性直线逐段自适应逼近分析信号的各分量频率,分解得到的信号分量与真实信号分量具有很好的频率匹配特性,不会产生频率混叠现象,因此,与小波分解与EMD分解相比,MCSSD能更有效地从转子早期碰摩故障振动信号分离出最具最大幅值的工频(或倍频)信号分量。将该信号分量从原信号中去除,对残余信号分量做频谱分析,即可有效诊断转子早期碰摩故障。应用实例证明了该方法的有效性和优越性。
文摘A novel M-ary chirp modulation technique based on an optimal chirp signal design is proposed in this paper to offer higher data rate for an indoor wireless chirp spread spectrum communication system. Both linear chirp signals and combined chirp signals are used in this system to reduce the effect of the cross correlation, and simplify the complexity of the system. The optimal scheme of de- signing both linear chirp signals and combined chirp signals is discussed to minimize the value of the cross correlation and obtain a better system performance. Simulation results show that, compared with the binary orthogonal chirp modulation technique, the M-ary chirp modulation technique based on an optimal chirp signal set has a higher data rate with a reasonable bit-error rate (BER) perform- ance under both additive white gaussian noise (AWGN) channel and indoor wireless channel.
文摘In order to suppress the fast decrease of the transfer efficiency of magnetic resonance coupled wireless power transfer system(MRCWPTS) with distance increase,this paper investigates the impact factors of the system transfer efficiency and is,then formulates a new efficiency optimal control method based on frequency control.Based upon this control method two optimal control schemes are designed to achieve transfer efficiency control of the system.Simulations and experiments show that the proposed efficiency optimal control method can effectively stabilize the system transfer efficiency in a certain range so as to successfully solve the subtle issue of transfer efficiency variation with distance.