The resistivity instability of the boron-doped polysilicon resistors being a line resistance element of ICs is within the range of several kΩ's,especially when our running the underneath metal interconnects.Polys...The resistivity instability of the boron-doped polysilicon resistors being a line resistance element of ICs is within the range of several kΩ's,especially when our running the underneath metal interconnects.Polysilicon resistors have been fabricated under various processing conditions as well as some electrical and crystallographic characteristics have been obtained.It is shown the resistivity instability mainly results from the variational carrier mobility.By analyzing the Seto's model,the barrier height and trapped charge density are observed reducing under the Al over layer.Therefore,the resistance instability is also caused by both the charge trapping/detrapping occurring at polysilicon grain boundaries and the resultant variation in the potential barrier height.The formation of high-stability polysilicon resistors in the range of several kΩ's has been decided by compensating the ion implantation,which makes the charge trapping/detrapping at the grain boundary less susceptible to the hydrogen annealing.展开更多
For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied ...For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied strain can tune/control carrier transport at a metal-semiconductor contact or semiconductor junction,which is named piezotronic effect.Metal-semiconductor-metal piezotronic transistors are key piezotronic nanodevices for electromechanical applications,and they are typical nonlinear elements.In this paper,a simplified current-voltage analysis solution of piezotronic transistors is developed,which can be used for circuit design and simulation.Furthermore,the typical nonlinear circuit:Chua's circuit based on piezotronic transistors is simulated.We find that the output signal of the piezotronic transistor circuit can be switched and changed asymmetrically by externally applied strain.This study provides insight into the nonlinear properties of the piezotronic transistor,as well as guidance for piezotronic transistor nonlinear circuit application.展开更多
Hot electron emission means that electrons move over potential barriers to come out of the metal when the metal is being heated.Obviously,voltage will generate between electrons and the metal.Based on this,the model o...Hot electron emission means that electrons move over potential barriers to come out of the metal when the metal is being heated.Obviously,voltage will generate between electrons and the metal.Based on this,the model of metal hot-electron power generation is built.Free electron model of Sommerfeld is used to describe the movement of electrons in metal.According to the different width of potential barriers,two models are built.One assumes that electrons move from one metal to another mainly by moving over the potential barrier as the barrier is wide enough.The other assumes that the potential barrier is so narrow that electrons mainly move through the potential barrier by tunnel effect.The first model is analyzed and proved strictly,including the building of model,the calculation of open-circuit voltage and the drawing of volt-ampere characteristic curve.The second model is analysed simply.This paper shows that power generation by metal hot-electron is possible based on the theory and can provide reference for researching in power generation of metal hot-electron.展开更多
文摘The resistivity instability of the boron-doped polysilicon resistors being a line resistance element of ICs is within the range of several kΩ's,especially when our running the underneath metal interconnects.Polysilicon resistors have been fabricated under various processing conditions as well as some electrical and crystallographic characteristics have been obtained.It is shown the resistivity instability mainly results from the variational carrier mobility.By analyzing the Seto's model,the barrier height and trapped charge density are observed reducing under the Al over layer.Therefore,the resistance instability is also caused by both the charge trapping/detrapping occurring at polysilicon grain boundaries and the resultant variation in the potential barrier height.The formation of high-stability polysilicon resistors in the range of several kΩ's has been decided by compensating the ion implantation,which makes the charge trapping/detrapping at the grain boundary less susceptible to the hydrogen annealing.
基金supported by the Natural Science Foundation of Gansu Province,China(Grant No.145RJZA226)Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2013-35)Beijing Municipal Commission of Science and Technology(Grant Nos.Z131100006013005 and Z131100006013004)
文摘For the materials that simultaneously exhibit piezoelectric and semiconductor properties,such as wurtzite Zn O,Ga N and In N,as well as two-dimensional single Mo S2,piezoelectric charges induced by externally applied strain can tune/control carrier transport at a metal-semiconductor contact or semiconductor junction,which is named piezotronic effect.Metal-semiconductor-metal piezotronic transistors are key piezotronic nanodevices for electromechanical applications,and they are typical nonlinear elements.In this paper,a simplified current-voltage analysis solution of piezotronic transistors is developed,which can be used for circuit design and simulation.Furthermore,the typical nonlinear circuit:Chua's circuit based on piezotronic transistors is simulated.We find that the output signal of the piezotronic transistor circuit can be switched and changed asymmetrically by externally applied strain.This study provides insight into the nonlinear properties of the piezotronic transistor,as well as guidance for piezotronic transistor nonlinear circuit application.
文摘Hot electron emission means that electrons move over potential barriers to come out of the metal when the metal is being heated.Obviously,voltage will generate between electrons and the metal.Based on this,the model of metal hot-electron power generation is built.Free electron model of Sommerfeld is used to describe the movement of electrons in metal.According to the different width of potential barriers,two models are built.One assumes that electrons move from one metal to another mainly by moving over the potential barrier as the barrier is wide enough.The other assumes that the potential barrier is so narrow that electrons mainly move through the potential barrier by tunnel effect.The first model is analyzed and proved strictly,including the building of model,the calculation of open-circuit voltage and the drawing of volt-ampere characteristic curve.The second model is analysed simply.This paper shows that power generation by metal hot-electron is possible based on the theory and can provide reference for researching in power generation of metal hot-electron.