To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform ph...To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform physical carrier sensing,and the carrier sensing range can be set to different values.In the traditional carrier sensing mechanism,the carrier sensing range is computed under the protocol interference model,which is not accurate.Here the optimal carrier sensing range with physical interference model is achieved.Each sending node implements the distributed approach in three phases at each time slot,and all the concurrent transmissions are interference free.Good performance can be achieved under this scheduling approach.The approximation ratio of the distributed method to the optimal one is also proved.展开更多
In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CS...In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CSMA/CA protocol used in IEEE802.11 p from the perspective of the geometric relationship amongst simultaneous transmitters. The desired channel and interfering channels are assumed to experience the same amount of path-loss and Rayleigh fading. On the basis of the proposed model, we analyse the attempted transmission probability of each road segment and the maximum intensity of active transmitters, including their theoretical values. Then, we employ the physical model to obtain the outage probability and derive the upper bound of the transmission capacity of a VANET, which is defined as the average spatial density of successful transmissions in the network. Simulation results indicate that the theoretical value offers a good bound on network capacity.展开更多
Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communicatio...Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communication network. It works by injecting a modulated carrier wave into the electric cables from one transceiver to another. But still, the noise level and impedance mismatch are still the main concern of this technology, particularly in the low voltage network in residential area. Power line has additive non-white noise and extremely harsh environment for communication. At the same time, there is signal attenuation along the power line caused by the impedance mismatch in the power line network. Even though these problems can be controlled using a band-pass filter and an impedance matching circuit respectively, but the impedances in the power line are time and location variant and it is rather difficult to design a circuit that allows maximum power transfer in the system all the time. Thus in this paper, a new adaptive impedance matching circuits is proposed for narrowband power line communication. This methodology is derived based on the RLC band-pass filter circuit. This concept is designed to achieve simpler configuration and higher matching resolution.展开更多
基金Supported by the National Basic Research Program of China(No.2007CB307105)the National Natural Science Foundation of China(No.60932005)
文摘To further increase the throughput of wireless multi-hop networks,a distributed scheduling method is proposed,which takes physical interference model into account.It is assumed that nodes in the network can perform physical carrier sensing,and the carrier sensing range can be set to different values.In the traditional carrier sensing mechanism,the carrier sensing range is computed under the protocol interference model,which is not accurate.Here the optimal carrier sensing range with physical interference model is achieved.Each sending node implements the distributed approach in three phases at each time slot,and all the concurrent transmissions are interference free.Good performance can be achieved under this scheduling approach.The approximation ratio of the distributed method to the optimal one is also proved.
基金supported in part by the National Natural Science Foundation of China under Grant No.61271184 and 61571065
文摘In this study, the transmission capacity of VANETs in a highway scenario is analysed on the basis of a 1D line model and the carrier sense multiple access with collision avoidance(CSMA/CA) protocol. We describe the CSMA/CA protocol used in IEEE802.11 p from the perspective of the geometric relationship amongst simultaneous transmitters. The desired channel and interfering channels are assumed to experience the same amount of path-loss and Rayleigh fading. On the basis of the proposed model, we analyse the attempted transmission probability of each road segment and the maximum intensity of active transmitters, including their theoretical values. Then, we employ the physical model to obtain the outage probability and derive the upper bound of the transmission capacity of a VANET, which is defined as the average spatial density of successful transmissions in the network. Simulation results indicate that the theoretical value offers a good bound on network capacity.
文摘Power line communication technology is used in various applications, from high voltage network to the low voltage network, as it is the only wired communication technology that is comparable with wireless communication network. It works by injecting a modulated carrier wave into the electric cables from one transceiver to another. But still, the noise level and impedance mismatch are still the main concern of this technology, particularly in the low voltage network in residential area. Power line has additive non-white noise and extremely harsh environment for communication. At the same time, there is signal attenuation along the power line caused by the impedance mismatch in the power line network. Even though these problems can be controlled using a band-pass filter and an impedance matching circuit respectively, but the impedances in the power line are time and location variant and it is rather difficult to design a circuit that allows maximum power transfer in the system all the time. Thus in this paper, a new adaptive impedance matching circuits is proposed for narrowband power line communication. This methodology is derived based on the RLC band-pass filter circuit. This concept is designed to achieve simpler configuration and higher matching resolution.