In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures...In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.展开更多
The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform rel...The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform relational B-spline(NURBS)and the fluctuation pressure obtained by large eddy simulation(LES),the Kriging surrogate model(KSM)of LTL was constructed for low aerodynamic noise,and the accuracy of the KSM was improved gradually by adding the sample point with maximum expected improvement(EI)and the optimal point from optimization.The optimal objective was searched with genetic algorithm(GA).The results show that the total fluctuation pressure level(FPL)of the optimal LTL can be 8.7 dB less than that of original one,and the shape optimization method is feasible for low aerodynamic noise design.展开更多
In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering th...In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.展开更多
Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S)...Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.展开更多
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with...This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.展开更多
A method of ascertaining grade length limitation of freeways in mountain terrain is presented. The relationship models between 15 th percentile speeds and grades were built through the surveys and analyses of operatio...A method of ascertaining grade length limitation of freeways in mountain terrain is presented. The relationship models between 15 th percentile speeds and grades were built through the surveys and analyses of operation speeds on 7 typical sections of 3 freeways in mountain terrain. Using 15 thpercentile and 85 th percentile as speed limitations, the methods of determining admitted velocities were put forward according to the grades. Deceleration distances of longitudinal slopeways were analyzed utilizing the theories of vehicle. According to the results of analysis, grade length limitation was loosed. Finally the values of grade length limitation for freeways were put forward. The results could be used as references for freeway design.展开更多
Dynamic envelope curve is a significant parameter to assess the running safety of high-speed trains.Up to now the method based on binocular stereo vision is the only way available to measure the dynamic envelope curve...Dynamic envelope curve is a significant parameter to assess the running safety of high-speed trains.Up to now the method based on binocular stereo vision is the only way available to measure the dynamic envelope curve of a train,the speed of which is over200km/h.Nevertheless the method has two limitations,one is large field-〇f-view(FO V),the other is calibration time.Hence portable calibration equipment,easy-t〇-build target and rapid calibration algorithm are required to complete the calibration.In this paper,a new rapid on-site calibration method with large FOV based on binocular stereo vision is proposed.To address these issues,a light target has been designed,the rail coordinate system(RCS)is represented by40fixed retroreflective points on the target,and they are utilized to calibrate the parameters of two cameras.In addition,two cameras merely capture a single image of the target simultaneously,and the intrinsic and extrinsic parameters of the cameras can be calculated rapidly.To testify the proposed method,the experiments have been conducted and the results reveal that the accuracy can reach+1mm,which can meet the measurement requirement.展开更多
Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process...Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.展开更多
In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influenc...In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influence of dimension variations of the grinding wheel on machining accuracy were investigated. Firstly, the variation trends of the dimension due to centrifugal force generated in different wheel speeds were studied and the effect of stress stiffening and spin softening was presented. Triangular heat flux distribution model was adopted to determine temperature distribution in grinding process. Temperature field cloud pictures were obtained by the finite element software. Then, dimension variation trends of wheel structure were acquired by considering the thermo-mechanical characteristic under combined action of centrifugal force and grinding heat at different speeds. A method of online dynamic monitoring and automatic compensation for dimension error of indexable insert was proposed. By experimental verification, the precision of the inserts satisfies the requirement of processing.展开更多
Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is...Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated through a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, a comparative analysis on electromagnetic characteristics according to the structural combinations on the stator-mover of LSM (linear synchronous motor) for VHST (very high speed train) maintaining the conventional wheel-rail method is conducted, and the structure of coreless superconducting LSM suitable for 600 km/h VHST is finally proposed in this paper.展开更多
To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results ...To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results show that the pressure on the front surface of vehicle is positive, and others are negative. The maximum negative one appears as a "gate" shape on front surfaces. The pressure on vehicle increases with train speed, and pressure on vehicles with cross-loaded structure is smaller than that without it. The airflow around vehicles is symmetrical about train vertical axis, and the flow velocity decreases gradually along the axis to ground. Airflow around vehicles with cross-loaded structure is weaker than that without the structure. The aerodynamic drag increases linearly with the train speed, and it is minimum for the mid-vehicle. The linear coefficient for mid-vehicle without cross-loaded structure is 29.75, nearly one time larger than that with the structure valued as 15.425. So, from the view-point of aerodynamic drag, the cross-loaded structure is more reasonable for the six-axis X2K double-deck container vehicle.展开更多
A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of...A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of eight vehicles coupled with a ballasted track. The vehicle is modeled as a multi-body system, and the rail is modeled with a Timoshenko beam resting on the discrete sleepers. The vehicle model considers the effect of the end connections of the neighboring vehicles on the dynamic behavior. The track model takes into account the lateral, vertical, and torsional deformations of the rails and the effect of the discrete sleeper support on the coupling dynamics of the vehicles and the track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. The train model couples with the track model by using a Hertzian contact model for the wheel/rail normal force calculation, and the nonlinear creep theory by Shen et al. (1984) is used for wheel/rail tangent force calculation. In the analysis, a curved track of 7000-m radius with failed fasteners is selected, and the effects of train operational speed and the number of failed fasteners on the dynamic behaviors of the train and the track are investigated in detail. Furthermore, the wheel/rail forces and derailment coefficient and the wheelset loading reduction are analyzed when the high-speed train passes over the curved track with the different number of continuously failed fasteners at different operational speeds. Through the detailed numerical analysis, it is found that the high-speed train can operate normally on the curved track of 7000-m radius at the speeds of 200 km/h to 350 km/h.展开更多
As the running speed of high-speed trains increases, aerodynamic drag becomes the key factor which limits the further increase of the running speed and energy consumption. Aerodynamic lift of the trailing car also bec...As the running speed of high-speed trains increases, aerodynamic drag becomes the key factor which limits the further increase of the running speed and energy consumption. Aerodynamic lift of the trailing car also becomes the key force which affects the amenity and safety of the train. In the present paper, a simplified CRH380A high-speed train with three carriages is chosen as the model in order to optimize aerodynamic drag of the total train and aerodynamic lift of the trailing car. A constrained mul- ti-objective optimization design of the aerodynamic head shape of high-speed trains based on adaptive non-dominated sorting genetic algorithm is also developed combining local function three-dimensional parametric approach and central Latin hypercube sampling method with maximin criteria based on the iterative local search algorithm. The results show that local function parametric approach can be well applied to optimal design of complex three-dimensional aerodynamic shape, and the adaptive non-dominated sorting genetic algorithm can be more accurate and efficient to find the Pareto front. After optimization the aerodynamic drag of the simplified train with three carriages is reduced by 3.2%, and the lift coefficient of the trailing car by 8.24%, the volume of the streamlined head by 2.16%; the aerodynamic drag of the real prototype CRH380A is reduced by 2.26%, lift coefficient of the trailing car by 19.67%. The variation of aerodynamic performance between the simplified train and the true train is mainly concentrated in the deformation region of the nose cone and tail cone. The optimization approach proposed in the present paper is simple yet efficient, and sheds lights on the constrained multi-objective engineering optimization design of aerodynamic shape of high-speed trains.展开更多
After more than 30 years of rapid urbanization, the overall urbanization rate of China reached 56.1% in 2015.However, despite China's rapid increase in its overall rate of urbanization, clear regional differences ...After more than 30 years of rapid urbanization, the overall urbanization rate of China reached 56.1% in 2015.However, despite China's rapid increase in its overall rate of urbanization, clear regional differences can be observed. Furthermore, inadequate research has been devoted to in-depth exploration of the regional differences in China's urbanization from a national perspective, as well as the internal factors that drive these differences. Using prefecture-level administrative units in China as the main research subject, this study illustrates the regional differences in urbanization by categorizing the divisions into four types based on their urbanization ratio and speed(high level: low speed; high level: high speed; low level: high speed; and low level: low speed). Next, we selected seven economic and geographic indicators and applied an ordered logit model to explore the driving factors of the regional differences in urbanization. A multiple linear regression model was then adopted to analyze the different impacts of these driving factors on regions with different urbanization types. The results showed that the regional differences in urbanization were significantly correlated to per capita GDP, industry location quotients, urban-rural income ratio,and time distance to major centers. In addition, with each type of urbanization, these factors were found to have a different driving effect. Specifically, the driving effect of per capita GDP and industry location quotients presented a marginally decreasing trend, while main road density appeared to have a more significant impact on cities with lower urbanization rates.展开更多
In the preliminary design stage of high-speed train smart suspension,a simple,yet accurate magnetorheological(MR)damper model whose parameters have clear physical meaning is needed.Based on the working mechanism analy...In the preliminary design stage of high-speed train smart suspension,a simple,yet accurate magnetorheological(MR)damper model whose parameters have clear physical meaning is needed.Based on the working mechanism analysis and the dynamic behavior study of the MR damper,a new consecutive viscoelastic plastics(VEP)model is proposed.A methodology to find the parameters of the proposed model directly has been proposed.The comparison with experimental results indicates that the proposed model could adequately characterize the intrinsic nonlinear behavior of the MR damper,including the hysteretic behavior,roll-off phenomenon,and the variation of the hysteresis width in terms of the frequency and magnitude of excitation.The results of experimental testing prove that the accuracy of the proposed model is higher than that of the phenomenological model while only containing four undetermined parameters with clear physical meaning.Moreover,based on the proposed VEP model,a nonlinear stiffness VEP(nkVEP)model is developed with higher precision in the hysteretic region.The nkVEP model,which can reproduce the behavior of the damper with fluctuating input current,is developed.The proposed model could predict accurately the response of the MR damper in a wide range of frequency and displacement.展开更多
Vehicle traveling time prediction is an important part of the research of intelligent transportation system. By now, there have been various kinds of methods for vehicle traveling time prediction. But few consider bot...Vehicle traveling time prediction is an important part of the research of intelligent transportation system. By now, there have been various kinds of methods for vehicle traveling time prediction. But few consider both aspects of time and space. In this paper, a vehicle traveling time prediction method based on grey theory (GT) and linear regression analysis (LRA) is presented. In aspects of time, we use the history data sequence of bus speed on a certain road to predict the future bus speed on that road by GT. And in aspects of space, we calculate the traffic affecting factors between various roads by LRA. Using these factors we can predict the vehicle's speed at the lower road if the vehicle's speed at the current road is known. Finally we use time factor and space factor as the weighting factors of the two results predicted by GT and LRA respectively to find the final result, thus calculating the vehicle's traveling time. The method also considers such factors as dwell time, thus making the prediction more accurate.展开更多
基金Projects(51908071,51708071)supported by National Natural Science Foundation of ChinaProject(2020JJ5975)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(18C0194)supported by the Scientific Research Project of Education Department of Hunan Province,ChinaProject(kfj190301)supported by Open Fund of Key Laboratory of Road Structure and Material of Ministry of Transport(Changsha University of Science&Technology),China。
文摘In order to reveal the changing law of the mechanical response of asphalt pavements under the action of vehicle load and provide references for the design of durable pavements,three typical asphalt pavement structures with flexible base(S1),combined base(S2),and semi-rigid base(S3)were selected to perform field strain tests under static and dynamic load using the fiber Bragg grating optical sensing technology.The changing characteristics of the strain field along the horizontal and depth directions of pavements were analyzed.The results indicate that the most unfavorable asphalt pavement layers were the upper-middle surface layer and the lower base layer.In addition,the most unfavorable loading positions on the surface layer and the base layer were the center of wheel load and the gap center between two wheels,respectively.The most unfavorable layer of the surface layers gradually moved from the lower layer to the upper layer with the increase of base layer modulus.The power function relationships between structural layer strain and vehicle speed were revealed.The semi-rigid base asphalt pavement was the most durable pavement type,since its strain value was lower compared to those of the other structures.
基金Projects(50975289,51275531)supported by the National Natural Science Foundation of ChinaProject(201104514)supported by the Special China Postdoctoral Science Foundation,ChinaProject(20100471229)supported by China Postdoctoral Science Foundation
文摘The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform relational B-spline(NURBS)and the fluctuation pressure obtained by large eddy simulation(LES),the Kriging surrogate model(KSM)of LTL was constructed for low aerodynamic noise,and the accuracy of the KSM was improved gradually by adding the sample point with maximum expected improvement(EI)and the optimal point from optimization.The optimal objective was searched with genetic algorithm(GA).The results show that the total fluctuation pressure level(FPL)of the optimal LTL can be 8.7 dB less than that of original one,and the shape optimization method is feasible for low aerodynamic noise design.
基金Project(20180608005600843855-19)supported by the International Graduate Exchange Program of Beijing Institute of Technology,China。
文摘In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.
基金supported by National Defense Arming Pre-researching Project(Grant No. 40402060102)
文摘Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.
基金Project(U1234208)supported by the National Natural Science Foundation of ChinaProject(2016YFB1200401)supported by the National Key Research and Development Program of China
文摘This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.
基金Sponsored by the Specialized Research Fund for the Doctoral Program of High Education(Grant No.20030213030)
文摘A method of ascertaining grade length limitation of freeways in mountain terrain is presented. The relationship models between 15 th percentile speeds and grades were built through the surveys and analyses of operation speeds on 7 typical sections of 3 freeways in mountain terrain. Using 15 thpercentile and 85 th percentile as speed limitations, the methods of determining admitted velocities were put forward according to the grades. Deceleration distances of longitudinal slopeways were analyzed utilizing the theories of vehicle. According to the results of analysis, grade length limitation was loosed. Finally the values of grade length limitation for freeways were put forward. The results could be used as references for freeway design.
基金National Science and Technology Major Project of China(No.2016ZX04003001)
文摘Dynamic envelope curve is a significant parameter to assess the running safety of high-speed trains.Up to now the method based on binocular stereo vision is the only way available to measure the dynamic envelope curve of a train,the speed of which is over200km/h.Nevertheless the method has two limitations,one is large field-〇f-view(FO V),the other is calibration time.Hence portable calibration equipment,easy-t〇-build target and rapid calibration algorithm are required to complete the calibration.In this paper,a new rapid on-site calibration method with large FOV based on binocular stereo vision is proposed.To address these issues,a light target has been designed,the rail coordinate system(RCS)is represented by40fixed retroreflective points on the target,and they are utilized to calibrate the parameters of two cameras.In addition,two cameras merely capture a single image of the target simultaneously,and the intrinsic and extrinsic parameters of the cameras can be calculated rapidly.To testify the proposed method,the experiments have been conducted and the results reveal that the accuracy can reach+1mm,which can meet the measurement requirement.
文摘Random vertical track irregularities are one of essential vibration sources in bridge, track structure and high-speed train systems. The common model of such irregularities is a stationary and ergodic Gaussian process. The study presents the results of numerical dynamic analysis of advanced virtual models of composite BTT (bridge/ballasted track structure/high-speed train) systems. The analysis has been conducted for a series of types of single-span simply-supported railway composite (steel-concrete) bridges, with a symmetric platform, located on lines with ballasted track structure adapted for high-speed trains. The bridges are designed according to Polish bridge standards. A new methodology of numerical modeling and simulation of dynamic processes in BTT systems has been applied. The methodology takes into consideration viscoelastic suspensions of rail-vehicles, nonlinear Hertz wheel-rail contact stiffness and one-side wheel-rail contact, physically nonlinear elastic-damping properties of the track structure, random vertical track irregularities, approach slabs and other features. Computer algorithms of FE (finite element) modeling and simulation were programmed in Delphi. Both static and dynamic numerical investigations of the bridges forming the series of types have been carried out. It has been proved that in the case of common structural solutions of bridges and ballasted track structures, it is necessary to put certain limitations on operating speeds, macadam ballast and vertical track roughness.
基金Project(2010ZX04001-162)supported by the National Science and Technology Major Project of China
文摘In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influence of dimension variations of the grinding wheel on machining accuracy were investigated. Firstly, the variation trends of the dimension due to centrifugal force generated in different wheel speeds were studied and the effect of stress stiffening and spin softening was presented. Triangular heat flux distribution model was adopted to determine temperature distribution in grinding process. Temperature field cloud pictures were obtained by the finite element software. Then, dimension variation trends of wheel structure were acquired by considering the thermo-mechanical characteristic under combined action of centrifugal force and grinding heat at different speeds. A method of online dynamic monitoring and automatic compensation for dimension error of indexable insert was proposed. By experimental verification, the precision of the inserts satisfies the requirement of processing.
文摘Recently, an interest in a hybrid system combining only the merits of the conventional wheel-rail system and Maglev propulsion system is growing as an alternative to high-speed maglev train. This hybrid-type system is based on wheel-rail method, but it enables to overcome the speed limitation by adhesion because it is operated through a non-contact method using a linear motor as a propulsion system and reduce the overall construction costs by its compatibility with the conventional railway systems. Therefore, a comparative analysis on electromagnetic characteristics according to the structural combinations on the stator-mover of LSM (linear synchronous motor) for VHST (very high speed train) maintaining the conventional wheel-rail method is conducted, and the structure of coreless superconducting LSM suitable for 600 km/h VHST is finally proposed in this paper.
基金Project(50975289) supported by the National Natural Science Foundation of ChinaProject(2009J007-C) supported by the Technological Research and Development Program of the Ministry of Railways,ChinaProject(CX2010B122) supported by Hunan Provincial Innovation Foundation for Postgraduate Students,China
文摘To study the aerodynamic performance of a new six-axis X2K double-deck container vehicle, numerical simulation was done based on three-dimensional, steady Navier-Stokes equations and k-e turbulence model. The results show that the pressure on the front surface of vehicle is positive, and others are negative. The maximum negative one appears as a "gate" shape on front surfaces. The pressure on vehicle increases with train speed, and pressure on vehicles with cross-loaded structure is smaller than that without it. The airflow around vehicles is symmetrical about train vertical axis, and the flow velocity decreases gradually along the axis to ground. Airflow around vehicles with cross-loaded structure is weaker than that without the structure. The aerodynamic drag increases linearly with the train speed, and it is minimum for the mid-vehicle. The linear coefficient for mid-vehicle without cross-loaded structure is 29.75, nearly one time larger than that with the structure valued as 15.425. So, from the view-point of aerodynamic drag, the cross-loaded structure is more reasonable for the six-axis X2K double-deck container vehicle.
基金Project supported by the National Natural Science Foundation of China (No. U1134202)the National Basic Research Program (973) of China (No. 2011CB711103)the Program for Changjiang Scholars and Innovative Research Team in University (Nos. IRT1178and SWJTU12ZT01), China
文摘A high-speed train-track coupling dynamic model is used to investigate the dynamic behavior of a high-speed train operating on a curved track with failed fasteners. The model considers a high-speed train consisting of eight vehicles coupled with a ballasted track. The vehicle is modeled as a multi-body system, and the rail is modeled with a Timoshenko beam resting on the discrete sleepers. The vehicle model considers the effect of the end connections of the neighboring vehicles on the dynamic behavior. The track model takes into account the lateral, vertical, and torsional deformations of the rails and the effect of the discrete sleeper support on the coupling dynamics of the vehicles and the track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. The train model couples with the track model by using a Hertzian contact model for the wheel/rail normal force calculation, and the nonlinear creep theory by Shen et al. (1984) is used for wheel/rail tangent force calculation. In the analysis, a curved track of 7000-m radius with failed fasteners is selected, and the effects of train operational speed and the number of failed fasteners on the dynamic behaviors of the train and the track are investigated in detail. Furthermore, the wheel/rail forces and derailment coefficient and the wheelset loading reduction are analyzed when the high-speed train passes over the curved track with the different number of continuously failed fasteners at different operational speeds. Through the detailed numerical analysis, it is found that the high-speed train can operate normally on the curved track of 7000-m radius at the speeds of 200 km/h to 350 km/h.
基金supported by the Major State Basic Research Development Program of China ("973" Program) (Grant No. 2011CB711100) National Key Technology R&D Program (Grant No. 2009BAQG12A03)
文摘As the running speed of high-speed trains increases, aerodynamic drag becomes the key factor which limits the further increase of the running speed and energy consumption. Aerodynamic lift of the trailing car also becomes the key force which affects the amenity and safety of the train. In the present paper, a simplified CRH380A high-speed train with three carriages is chosen as the model in order to optimize aerodynamic drag of the total train and aerodynamic lift of the trailing car. A constrained mul- ti-objective optimization design of the aerodynamic head shape of high-speed trains based on adaptive non-dominated sorting genetic algorithm is also developed combining local function three-dimensional parametric approach and central Latin hypercube sampling method with maximin criteria based on the iterative local search algorithm. The results show that local function parametric approach can be well applied to optimal design of complex three-dimensional aerodynamic shape, and the adaptive non-dominated sorting genetic algorithm can be more accurate and efficient to find the Pareto front. After optimization the aerodynamic drag of the simplified train with three carriages is reduced by 3.2%, and the lift coefficient of the trailing car by 8.24%, the volume of the streamlined head by 2.16%; the aerodynamic drag of the real prototype CRH380A is reduced by 2.26%, lift coefficient of the trailing car by 19.67%. The variation of aerodynamic performance between the simplified train and the true train is mainly concentrated in the deformation region of the nose cone and tail cone. The optimization approach proposed in the present paper is simple yet efficient, and sheds lights on the constrained multi-objective engineering optimization design of aerodynamic shape of high-speed trains.
基金supported by the National Science and Technology Support Program(Grant No.2014BAL04B01)the National Natural Science Foundation of China(Grant No.4159084)the National Social Science Fund of China(Grant No.14BGL149)
文摘After more than 30 years of rapid urbanization, the overall urbanization rate of China reached 56.1% in 2015.However, despite China's rapid increase in its overall rate of urbanization, clear regional differences can be observed. Furthermore, inadequate research has been devoted to in-depth exploration of the regional differences in China's urbanization from a national perspective, as well as the internal factors that drive these differences. Using prefecture-level administrative units in China as the main research subject, this study illustrates the regional differences in urbanization by categorizing the divisions into four types based on their urbanization ratio and speed(high level: low speed; high level: high speed; low level: high speed; and low level: low speed). Next, we selected seven economic and geographic indicators and applied an ordered logit model to explore the driving factors of the regional differences in urbanization. A multiple linear regression model was then adopted to analyze the different impacts of these driving factors on regions with different urbanization types. The results showed that the regional differences in urbanization were significantly correlated to per capita GDP, industry location quotients, urban-rural income ratio,and time distance to major centers. In addition, with each type of urbanization, these factors were found to have a different driving effect. Specifically, the driving effect of per capita GDP and industry location quotients presented a marginally decreasing trend, while main road density appeared to have a more significant impact on cities with lower urbanization rates.
基金supported by grant from the Innovation and Technology Support Program of the Hong Kong Special Administrative Region,China(Project No.ITS/241/11)the National Natural Science Foundation of China(Grant No.61134002)the National Basic Research Program of China("973" Program)(Grant No.2011CB711106)
文摘In the preliminary design stage of high-speed train smart suspension,a simple,yet accurate magnetorheological(MR)damper model whose parameters have clear physical meaning is needed.Based on the working mechanism analysis and the dynamic behavior study of the MR damper,a new consecutive viscoelastic plastics(VEP)model is proposed.A methodology to find the parameters of the proposed model directly has been proposed.The comparison with experimental results indicates that the proposed model could adequately characterize the intrinsic nonlinear behavior of the MR damper,including the hysteretic behavior,roll-off phenomenon,and the variation of the hysteresis width in terms of the frequency and magnitude of excitation.The results of experimental testing prove that the accuracy of the proposed model is higher than that of the phenomenological model while only containing four undetermined parameters with clear physical meaning.Moreover,based on the proposed VEP model,a nonlinear stiffness VEP(nkVEP)model is developed with higher precision in the hysteretic region.The nkVEP model,which can reproduce the behavior of the damper with fluctuating input current,is developed.The proposed model could predict accurately the response of the MR damper in a wide range of frequency and displacement.
基金the National Natural Science Foundation of China (No. 50575145)the National High Technology Research and Development Program (863) of China(Nos. 2006AA04Z432 and 2007AA04Z419)
文摘Vehicle traveling time prediction is an important part of the research of intelligent transportation system. By now, there have been various kinds of methods for vehicle traveling time prediction. But few consider both aspects of time and space. In this paper, a vehicle traveling time prediction method based on grey theory (GT) and linear regression analysis (LRA) is presented. In aspects of time, we use the history data sequence of bus speed on a certain road to predict the future bus speed on that road by GT. And in aspects of space, we calculate the traffic affecting factors between various roads by LRA. Using these factors we can predict the vehicle's speed at the lower road if the vehicle's speed at the current road is known. Finally we use time factor and space factor as the weighting factors of the two results predicted by GT and LRA respectively to find the final result, thus calculating the vehicle's traveling time. The method also considers such factors as dwell time, thus making the prediction more accurate.