A high resolution shallow-water model is designed to study the roles which the topographical parameter and latitudinal basic flow play in the propagation of vortex Rossby waves and typhoon tangential velocity changes....A high resolution shallow-water model is designed to study the roles which the topographical parameter and latitudinal basic flow play in the propagation of vortex Rossby waves and typhoon tangential velocity changes. With no latitudinal flow, the horizontal scale effects of island terrain on the vortex Rossby waves propagation show that the disturbance vorticity follows a clockwise island-circulating path more significantly, the local maximum wind speed amplitude reduces more sharply, the maximum mean azimuthally tangential wind spins down more substantially, when the topographic horizontal scale augments. With the latitudinal basic flow, the evolution of local wind and mean velocity are affected by the distance changes between TC and the terrain and the time length of topographic action: the local wind amplitude intensifies and the mean velocity diminishes while the distance is shortening; the opposite is true while TC is away from the terrain gradually.展开更多
In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed bas...In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed based on CFD theory combined with the finite element method. By analyzing its hydraulic performance through the step-by-step CFD method,the prediction pressure-flow curve(p-Q curve) of the pressure-compensating emitter was obtained. Then the test samples were fabricated using rapid prototype and manufacturing(RP & M) technology. The emitters' hydraulic performance experiment was carried out and the experimental p-Q curve was obtained. The step-by-step CFD design method was verified by comparing the experimental p-Q curve with the prediction values,which showed that the prediction values met the experimental results well within the normal range of the emitter's working pressure. On this basis,the effect of the emitter structure on its pressure-compensating performance was studied,which showed that the height of the pressure-compensating region had significant effects on the emitter's pressure-compensating performance. Series products of the pressure-compensating emitter could be designed by changing the region's height.展开更多
With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource...With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource should be fully utilized to offer different services to multiple users. In order to maximize system throughput while still guaranteeing the fairness among users, a proportional fairness based algorithm is proposed in this work. Since most of the previous resource allocation algorithms were simply based on the channel conditions without taking into account user's demand, in this paper, we introduce the theory of fuzzy synthetic evaluation(FSE) which also allows us to consider user's demand as an important factor. As such, the fairness among users can be improved based on different users' requirements for services. In addition, a channel state information based rate adaptation scheme is also proposed. Through simulation studies, the results clearly validate that our proposed scheme shows advantages on providing user fairness while still improving the system throughput.展开更多
Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual ...Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual information into spatial transformation and histogram-based calculation, and performing 3D spatial transformation and trilinear interpolation on graphic processing unit (GPU). The 3D floating image is downloaded to GPU as flat 3D texture, and then fetched and interpolated for each new voxel location in fragment shader. The transformed resuits are rendered to textures by using frame buffer object (FBO) extension, and then read to the main memory used for the remaining computation on CPU. Experimental results show that GPU-accelerated method can achieve speedup about an order of magnitude with better registration result compared with the software implementation on a single-core CPU.展开更多
基金Natural Science Foundation of China (40325014) Science Foundation for Post Ph.D in China (2004036410) Science Foundation for Post Ph.D. in Jiangsu Province
文摘A high resolution shallow-water model is designed to study the roles which the topographical parameter and latitudinal basic flow play in the propagation of vortex Rossby waves and typhoon tangential velocity changes. With no latitudinal flow, the horizontal scale effects of island terrain on the vortex Rossby waves propagation show that the disturbance vorticity follows a clockwise island-circulating path more significantly, the local maximum wind speed amplitude reduces more sharply, the maximum mean azimuthally tangential wind spins down more substantially, when the topographic horizontal scale augments. With the latitudinal basic flow, the evolution of local wind and mean velocity are affected by the distance changes between TC and the terrain and the time length of topographic action: the local wind amplitude intensifies and the mean velocity diminishes while the distance is shortening; the opposite is true while TC is away from the terrain gradually.
基金The National Natural Science Fund(No.50975227)The National High-tech R & D Program("863"Program)(No.2011AA100507-04)
文摘In order to improve the design and research and development (R & D) efficiency of the pressure- compensating drip irrigation emitter,a step-by-step computational fluid dynamics (CFD) design method was proposed based on CFD theory combined with the finite element method. By analyzing its hydraulic performance through the step-by-step CFD method,the prediction pressure-flow curve(p-Q curve) of the pressure-compensating emitter was obtained. Then the test samples were fabricated using rapid prototype and manufacturing(RP & M) technology. The emitters' hydraulic performance experiment was carried out and the experimental p-Q curve was obtained. The step-by-step CFD design method was verified by comparing the experimental p-Q curve with the prediction values,which showed that the prediction values met the experimental results well within the normal range of the emitter's working pressure. On this basis,the effect of the emitter structure on its pressure-compensating performance was studied,which showed that the height of the pressure-compensating region had significant effects on the emitter's pressure-compensating performance. Series products of the pressure-compensating emitter could be designed by changing the region's height.
基金partially supported by the Academy of Finland (Decision No. 284748, 288473)
文摘With its rapid development in the wireless markets, IEEE 802.11 WLAN is experiencing a huge popularity. However, due to the limitation of frequency bandwidth of WLANs, it is essential that the available radio resource should be fully utilized to offer different services to multiple users. In order to maximize system throughput while still guaranteeing the fairness among users, a proportional fairness based algorithm is proposed in this work. Since most of the previous resource allocation algorithms were simply based on the channel conditions without taking into account user's demand, in this paper, we introduce the theory of fuzzy synthetic evaluation(FSE) which also allows us to consider user's demand as an important factor. As such, the fairness among users can be improved based on different users' requirements for services. In addition, a channel state information based rate adaptation scheme is also proposed. Through simulation studies, the results clearly validate that our proposed scheme shows advantages on providing user fairness while still improving the system throughput.
基金Supported by National High Technology Research and Development Program("863"Program)of China(No.863-306-ZD13-03-06)
文摘Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual information into spatial transformation and histogram-based calculation, and performing 3D spatial transformation and trilinear interpolation on graphic processing unit (GPU). The 3D floating image is downloaded to GPU as flat 3D texture, and then fetched and interpolated for each new voxel location in fragment shader. The transformed resuits are rendered to textures by using frame buffer object (FBO) extension, and then read to the main memory used for the remaining computation on CPU. Experimental results show that GPU-accelerated method can achieve speedup about an order of magnitude with better registration result compared with the software implementation on a single-core CPU.