The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density funct...The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM experiments find that pentacene adopts a highly selective and dispersed growth mode in the initial stage. By using DFT calculations including van der Waals interactions, we find that the configuration with pentacene adsorbed on face-centered cubic (fcc) regions of G/Ru is the most stable one, which accounts for the selective adsorption at low coverage. Moreover, at high coverage, we have successfully controlled the molecular assembly from amorphous, local ordering, to long-range order by optimizing the deposition rate and substrate temperature.展开更多
Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs alway...Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs always exist in high-rise building structures. In order to obtain the ultimate loading capacity of continuous composite slabs, the full scale test on slab specimens with high cost need to be carried out. This paper presented an analytical model for calculating the ultimate loading capacity of continuous composite slabs. Only the small-scale slide block test needed to be carried out for determining some mechanical parameters, resulting in less cost, compared with the conventional m-k test method. Various load conditions and parameters were considered in the analytical model. The comparison between test results and predicted results showed that the proposed method had enough precision. Furthermore, the simplified method was also proposed for practical design.展开更多
In this review a series of organic-based open porous networks are discussed, in which hydrogen bonds play an important role in network formation. Using these open networks as molecular templates: 1) a wealth of functi...In this review a series of organic-based open porous networks are discussed, in which hydrogen bonds play an important role in network formation. Using these open networks as molecular templates: 1) a wealth of functional guest species can be immo- bilized; 2) fullerene molecules can be separated and recognized; 3) photoisomerization reactions can be observed by STM; 4) 1D molecular arrays can be constructed; and 5) heterogeneous bilayer structures can be formed. It is envisioned that these su- pramolecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective ca- talysis, molecular recognition and host-guest supramolecular chemistry.展开更多
The polystyrene-based polymer blends, partially miscible poly(bisphenol A carbonate)/polystyrene (PC/PS) and completely miscible poly(2,6-dimethylphenylene oxide)/polystyrene (PPO/PS), in nanorods with gradient compos...The polystyrene-based polymer blends, partially miscible poly(bisphenol A carbonate)/polystyrene (PC/PS) and completely miscible poly(2,6-dimethylphenylene oxide)/polystyrene (PPO/PS), in nanorods with gradient composition distribution were discussed. The polymer blend nanorods were prepared by infiltrating the polymer blends into nanopores of anodic aluminum oxide (AAO) templates via capillary action. Their morphology was investigated by micro-Fourier transform infrared spectroscopy (micro-FTIR) and nano-thermal analysis (nano-TA) with spatial resolution. The composition gradient of polymer blends in the nanopores is governed by the difference of viscosity and miscibility between the two polymers in the blends and the pore diameter. The capillary wetting of porous AAO templates by polymer blends offers a unique method to fabricate functional nanostructured materials with gradient composition distribution for the potential application to nanodevices.展开更多
基金This work was financially supported by the Ministry of Science and Technology (MOST Nos. 2011CB921702 and 2011CB932700), National Natural Science Foundation of China (NSFC No. 61222112), Multilevel Molecular Assemblies: Structure, Dynamics, and Functions (TRR61), Shanghai Supercomputer Center (SSC), and Chinese Academy of Sciences (CAS) in China. WAH acknowledges support from the UK Car-Parinello consortium, grant No. EP/F037783/1.
文摘The template-directed assembly of planar pentacene molecules on epitaxial graphene grown on Ru(0001) (G/Ru) has been investigated by means of low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM experiments find that pentacene adopts a highly selective and dispersed growth mode in the initial stage. By using DFT calculations including van der Waals interactions, we find that the configuration with pentacene adsorbed on face-centered cubic (fcc) regions of G/Ru is the most stable one, which accounts for the selective adsorption at low coverage. Moreover, at high coverage, we have successfully controlled the molecular assembly from amorphous, local ordering, to long-range order by optimizing the deposition rate and substrate temperature.
文摘Composite slabs with profiled steel sheet are widely applied in practical structures now. Plenty of literatures can be available about simply supported composite slabs with single span. However, continuous slabs always exist in high-rise building structures. In order to obtain the ultimate loading capacity of continuous composite slabs, the full scale test on slab specimens with high cost need to be carried out. This paper presented an analytical model for calculating the ultimate loading capacity of continuous composite slabs. Only the small-scale slide block test needed to be carried out for determining some mechanical parameters, resulting in less cost, compared with the conventional m-k test method. Various load conditions and parameters were considered in the analytical model. The comparison between test results and predicted results showed that the proposed method had enough precision. Furthermore, the simplified method was also proposed for practical design.
文摘In this review a series of organic-based open porous networks are discussed, in which hydrogen bonds play an important role in network formation. Using these open networks as molecular templates: 1) a wealth of functional guest species can be immo- bilized; 2) fullerene molecules can be separated and recognized; 3) photoisomerization reactions can be observed by STM; 4) 1D molecular arrays can be constructed; and 5) heterogeneous bilayer structures can be formed. It is envisioned that these su- pramolecular networks might be developed into a new family of useful soft frameworks for studies toward shape-selective ca- talysis, molecular recognition and host-guest supramolecular chemistry.
基金supported by a Grant-in-Aid for the Global COE Program "Science for Future Molecular Systems" from the Ministry of Education, Culture, Science, Sports and Technology of JapanZ.S. thanks the National Natural Science Foundation of China (50921062) for support
文摘The polystyrene-based polymer blends, partially miscible poly(bisphenol A carbonate)/polystyrene (PC/PS) and completely miscible poly(2,6-dimethylphenylene oxide)/polystyrene (PPO/PS), in nanorods with gradient composition distribution were discussed. The polymer blend nanorods were prepared by infiltrating the polymer blends into nanopores of anodic aluminum oxide (AAO) templates via capillary action. Their morphology was investigated by micro-Fourier transform infrared spectroscopy (micro-FTIR) and nano-thermal analysis (nano-TA) with spatial resolution. The composition gradient of polymer blends in the nanopores is governed by the difference of viscosity and miscibility between the two polymers in the blends and the pore diameter. The capillary wetting of porous AAO templates by polymer blends offers a unique method to fabricate functional nanostructured materials with gradient composition distribution for the potential application to nanodevices.