In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorith...In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.展开更多
In the new competitive environment of the electricity market, risk analysis is a powerful tool to guide investors under both contract uncertainties and energy prices of the spot market. Moreover, simulation of spot pr...In the new competitive environment of the electricity market, risk analysis is a powerful tool to guide investors under both contract uncertainties and energy prices of the spot market. Moreover, simulation of spot price scenarios and evaluation of energy contracts performance, are also necessary to the decision maker, and in particular to the trader to foresee opportunities and possible threats in the trading activity. In this context, computational systems that allow what-if analysis, involving simulation of spot price, contract portfolio optimization and risk evaluation are rather important. This paper proposes a decision support system not only for solving the problem of contracts portfolio optimization, by using linear programming, but also to execute risks analysis of the contracts portfolio performance, with VaR and CVaR metrics. Realistic tests have demonstrated the efficiency of this system.展开更多
Difference systems of sets (DSSs) are combinatorial configurations which were introduced in 1971 by Levenstein for the construction of codes for synchronization. In this paper, we present two kinds of constructions of...Difference systems of sets (DSSs) are combinatorial configurations which were introduced in 1971 by Levenstein for the construction of codes for synchronization. In this paper, we present two kinds of constructions of difference systems of sets by using disjoint difference families and a special type of difference sets, respectively. As a consequence, new infinite classes of optimal DSSs are obtained.展开更多
基金Projects(61102106,61102105)supported by the National Natural Science Foundation of ChinaProject(2013M530148)supported by China Postdoctoral Science Foundation+1 种基金Project(HEUCF140809)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(LBH-Z13054)supported by Heilongjiang Postdoctoral Fund,China
文摘In order to effectively solve combinatorial optimization problems,a membrane-inspired quantum bee colony optimization(MQBCO)is proposed for scientific computing and engineering applications.The proposed MQBCO algorithm applies the membrane computing theory to quantum bee colony optimization(QBCO),which is an effective discrete optimization algorithm.The global convergence performance of MQBCO is proved by Markov theory,and the validity of MQBCO is verified by testing the classical benchmark functions.Then the proposed MQBCO algorithm is used to solve decision engine problems of cognitive radio system.By hybridizing the QBCO and membrane computing theory,the quantum state and observation state of the quantum bees can be well evolved within the membrane structure.Simulation results for cognitive radio system show that the proposed decision engine method is superior to the traditional intelligent decision engine algorithms in terms of convergence,precision and stability.Simulation experiments under different communication scenarios illustrate that the balance between three objective functions and the adapted parameter configuration is consistent with the weights of three normalized objective functions.
文摘In the new competitive environment of the electricity market, risk analysis is a powerful tool to guide investors under both contract uncertainties and energy prices of the spot market. Moreover, simulation of spot price scenarios and evaluation of energy contracts performance, are also necessary to the decision maker, and in particular to the trader to foresee opportunities and possible threats in the trading activity. In this context, computational systems that allow what-if analysis, involving simulation of spot price, contract portfolio optimization and risk evaluation are rather important. This paper proposes a decision support system not only for solving the problem of contracts portfolio optimization, by using linear programming, but also to execute risks analysis of the contracts portfolio performance, with VaR and CVaR metrics. Realistic tests have demonstrated the efficiency of this system.
基金supported by National Natural Science Foundation of China (Grant Nos.10771051,10831002)
文摘Difference systems of sets (DSSs) are combinatorial configurations which were introduced in 1971 by Levenstein for the construction of codes for synchronization. In this paper, we present two kinds of constructions of difference systems of sets by using disjoint difference families and a special type of difference sets, respectively. As a consequence, new infinite classes of optimal DSSs are obtained.