期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多源信息和深度学习的多作物叶面积指数预测模型研究 被引量:2
1
作者 郝子源 杨玮 +2 位作者 李浩 于滈 李民赞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第12期3862-3870,共9页
叶面积指数(LAI)是评价作物长势的重要参数,快速、准确、低成本地获取作物LAI对于指导作物田间管理有重要的意义。为了低成本获取多种作物的LAI,基于多源信息和深度学习构建了通用的LAI预测模型。在大豆、小麦、花生、玉米四种作物的六... 叶面积指数(LAI)是评价作物长势的重要参数,快速、准确、低成本地获取作物LAI对于指导作物田间管理有重要的意义。为了低成本获取多种作物的LAI,基于多源信息和深度学习构建了通用的LAI预测模型。在大豆、小麦、花生、玉米四种作物的六个生长时期进行了大田实验,以获取用于建模的多源信息。使用航拍无人机获取作物低空可见光图像、红边图像和近红外图像等多光谱图像信息,此外还采集相关的一维数据信息,包括无人机飞行姿态、拍摄高度、作物生长状态和环境光照。借助深度学习出色的图像和数据处理能力建立基于复杂输入信息的LAI预测模型,考虑到一维数据也要参与模型的训练过程,在设计模型时,采用了组合型网络架构。在卷积神经网络(CNN)算法提取图像深度特征的基础上加入了LightGBM算法用于结合图像特征和一维数据实现作物LAI的最终预测。CNN模型部分使用了VGG19, ResNet50, Inception V3和DenseNet201四种常见的结构。为了更好地说明CNN模型提取图像特征的能力,分析了不同图像输入下四种模型的作物分类情况。结果表明,以可见光、红边和近红外图像为输入时,四种模型的分类准确度均相较于仅有可见光图像时有所提高,尤其是基于Inception V3和DenseNet201的两种模型分类准确率均达到99%以上,证明了CNN模型提取多光谱图像特征的有效性。将图像特征作为LightGBM模型的输入信息预测LAI时,实测值与预测值的R2最大为0.819 2,而在输入中加入一维数据信息后,模型的R2均可达到0.9以上,说明多源信息输入对于提高LAI预测模型的准确度有重要作用。该研究建立的模型可以针对不同的作物进行LAI的预测,不需要对多光谱图像进行复杂的处理,因此,该研究可以实现LAI的低成本、快速预测,同时可以获得较高的预测准确度。 展开更多
关键词 叶面积指数 多光谱图像 多源信息 组合型网络架构 预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部