Directional solidification experiments were conducted for Ti-46Al-8Nb alloy at the growth rates ranging from 3 to 70 pards. The microstructure evolution and microsegregation pattern were investigated. In the range of ...Directional solidification experiments were conducted for Ti-46Al-8Nb alloy at the growth rates ranging from 3 to 70 pards. The microstructure evolution and microsegregation pattern were investigated. In the range of growth rate, a regular dendritic structure appears and the primary dendrite spacing decreases with increasing growth rate. The peritectic reaction is observed during the solidification and the final microstructure is composed of α2/γ lamellar structure and retained β(B2) after directional solidification The lamellar orientation is found to be parallel and 45° to the primary growth direction ofβ dendrite. Peritectic reaction leads to significant chemical inhomogeneity, in which aluminum is rich in interdendritic liquid and niobium is rich in the core ofβ dendrite during the solidification. With the nucleation and growth of a phase, the segregation amplitude of niobium increases, which promotes the formation of B2 phase, while aluminum rich in the interdendritic becomes homogeneous gradually.展开更多
Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during per...Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during peritectic reaction.Under different growth conditions and compositions,different growth morphologies of triple junction region are presented.For the hypoperitectic Cu-13.5%Ge alloy,as the pulling velocity(v) increases from 2 to 5 μm/s,the morphological instability of the peritectic phase occurs during the peritectic reaction and the remelting interface of the primary phase is relatively stable.However,for the hyperperitectic Cu-15.6%Ge alloy wim v=5 μm/s,the nonplanar remelting interface near the trijunction is presented.The morphological stabilities of the solidifying peritectic phase and the remelting primary phase are analyzed in terms of the constitutional undercooling criterion.展开更多
Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate ...Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate were investigated. Experimental results are presented, including primary and higher order dendrite arm spacings 21, 22, 23 and dendrite tip radius R of primary NisSn2 phase. Comparisons between the theoretical predictions and the experimental results show that, for the primary dendrites, 21=335.882v-0.21, which is in agreement with the Kurz-Fisher model; for the secondary dendrites, λ2=44.957v-0.277, which is consistent with the Bouchard-Kirkaldy model; for the tertiary dendrites, λ3=40.512v-0.274; for the dendrite tip radius, R=22.7v-0.36. The experimental results also show that the 21/22 changes greatly with increasing growth rate while the 21/23 has no significant change, indicating that tertiary dendrite arms have a more similar growth characteristics to primary dendrites compared with secondary dendrites. The λ1/R ranges from 2 to 2.3 with the increase of growth rate. Key words: Sn-Ni alloy; directional solidification; dendrite arm spacing; dendrite tip radius展开更多
This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a...This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a mechanic system including two-row planetary gear sets and their regular resistance conditions, an explicit model for calculating the partial ratios of coupled planetary gear sets was proposed. In addition, by giving this effective model, the partial ratios can be calculated simply and accurately.展开更多
基金Projects (50801019,51071062) supported by the National Natural Science Foundation of ChinaProject (2011CB605504) supported by the National Basic Research Program of China
文摘Directional solidification experiments were conducted for Ti-46Al-8Nb alloy at the growth rates ranging from 3 to 70 pards. The microstructure evolution and microsegregation pattern were investigated. In the range of growth rate, a regular dendritic structure appears and the primary dendrite spacing decreases with increasing growth rate. The peritectic reaction is observed during the solidification and the final microstructure is composed of α2/γ lamellar structure and retained β(B2) after directional solidification The lamellar orientation is found to be parallel and 45° to the primary growth direction ofβ dendrite. Peritectic reaction leads to significant chemical inhomogeneity, in which aluminum is rich in interdendritic liquid and niobium is rich in the core ofβ dendrite during the solidification. With the nucleation and growth of a phase, the segregation amplitude of niobium increases, which promotes the formation of B2 phase, while aluminum rich in the interdendritic becomes homogeneous gradually.
基金Projects (50901025,50975060,51331005) supported by the National Natural Science Foundation of ChinaProject (2011CB610406) supported by the National Basic Research Program of China+2 种基金Projects (201104420,20090450840) supported by China Postdoctoral Science FoundationProject (JC201209) supported by Outstanding Young Scientist Foundation of Heilongjiang Province,ChinaProject (HIT.BRET1.20100008) supported by the Fundamental Research Funds for Central Universities,China
文摘Peritectic reaction was studied by directional solidification of Cu-Ge alloys.A larger triple junction region of peritectic reaction was used to analyze the interface stability of the triple junction region during peritectic reaction.Under different growth conditions and compositions,different growth morphologies of triple junction region are presented.For the hypoperitectic Cu-13.5%Ge alloy,as the pulling velocity(v) increases from 2 to 5 μm/s,the morphological instability of the peritectic phase occurs during the peritectic reaction and the remelting interface of the primary phase is relatively stable.However,for the hyperperitectic Cu-15.6%Ge alloy wim v=5 μm/s,the nonplanar remelting interface near the trijunction is presented.The morphological stabilities of the solidifying peritectic phase and the remelting primary phase are analyzed in terms of the constitutional undercooling criterion.
基金Projects (51071062, 51271068, 51274077) supported by the National Natural Science Foundation of China Project (2011 -P03) supported by Open Fund of State Key Laboratory of Mold and Die Technology of Huazhong University of Science and Technology, China+1 种基金 Project (HIT. NSRIF. 2013002) supported by the Fundamental Research Funds for the Central Universities, China Project (2011CB610406) supported by the National Basic Research Program of China
文摘Sn-36%Ni peritectie alloys were directionally solidified at different growth rates under a constant temperature gradient (20 K/mm), the dependences of microstructural characteristic length scales on the growth rate were investigated. Experimental results are presented, including primary and higher order dendrite arm spacings 21, 22, 23 and dendrite tip radius R of primary NisSn2 phase. Comparisons between the theoretical predictions and the experimental results show that, for the primary dendrites, 21=335.882v-0.21, which is in agreement with the Kurz-Fisher model; for the secondary dendrites, λ2=44.957v-0.277, which is consistent with the Bouchard-Kirkaldy model; for the tertiary dendrites, λ3=40.512v-0.274; for the dendrite tip radius, R=22.7v-0.36. The experimental results also show that the 21/22 changes greatly with increasing growth rate while the 21/23 has no significant change, indicating that tertiary dendrite arms have a more similar growth characteristics to primary dendrites compared with secondary dendrites. The λ1/R ranges from 2 to 2.3 with the increase of growth rate. Key words: Sn-Ni alloy; directional solidification; dendrite arm spacing; dendrite tip radius
文摘This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a mechanic system including two-row planetary gear sets and their regular resistance conditions, an explicit model for calculating the partial ratios of coupled planetary gear sets was proposed. In addition, by giving this effective model, the partial ratios can be calculated simply and accurately.