AIM: To establish a simplified method for generating peptide-major histocompatibility complex (MHC) class I tetramers.METHODS: cDNAs encoding the extracellular domain of human lymphocyte antigen (HLA)-A*0201 he...AIM: To establish a simplified method for generating peptide-major histocompatibility complex (MHC) class I tetramers.METHODS: cDNAs encoding the extracellular domain of human lymphocyte antigen (HLA)-A*0201 heavy chain (A2) and β2-microglobulin (132m) from total RNA extracted from leukocytes of HLA-A2+ donors were doned into separate expression vectors by reverse transcription-polymerase chain reaction. The recombinant A2 and 132m proteins were expressed in ~/a oo/i^uain BL21(DE3) and recovered from the inclusion body fraction. Soluble A2 proteins loaded with specific antigen peptides were refolded by dilution from the heavy chain in the presence of light chain 132m and HLA-A2-restricted peptide antigens. The refolded A2 monomers were biotinylated with a commercial biotinylation enzyme (BirA) and purified by low pressure anion exchange chromatography on a Q-Sepharose (fast flow) column.The tetramers were then formed by mixing A2 monomers with streptavidin-PE in a molar ratio of 4:1. Flow cytometry was used to confirm the expected tetramer staining of CD8^+ T cells.RESULTS: Recombinant genes for HLA-A*0201 heavy chain (A2) fused to a BirA substrate peptide (A2-BSP) and mature β2m from HLA-A2+ donor leukocytes were successfully doned and highly expressed in E. coli, Two soluble monomeric A2-peptide complexes were reconstituted from A2-BSP in the presence of 132m and peptides loaded with either human cytomegalovirus pp65495-503 peptide (NLVPMVATV,NLV; designated as A2-NLV) or influenza virus matrix protein Mp58-66 peptide (GILGFVFTL, GIL; designated as A2-GIL). Refolded A2-NLV or A2-GIL monomers were biotinylated and highly purified by single step anion exchange column chromatography. The tetramers were then formed by mixing the biotinylated A2-NLV or A2-GIL monomers with streptavidin-PE, leading to more than 80% multiplicationas revealed by SDS-PAGE under non-reducing, unboiled conditions. Flow cytometry revealed that these tetramers could specifically bind to CD8^+ T cells from a HLA-A2^+ donor,but failed to bind to those from a HLA-A2- donor.CONCLUSION: The procedure is simple and efficient for generating peptide-MHC tetramers.展开更多
Natural killer(NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex(MHC) matching, play pivotal roles in immune defence against tumors. However, tumo...Natural killer(NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex(MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor(CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.展开更多
基金Supported by the National Natural Science Foundation of China, No. 30230350 and No. 30371651Major State Basic Research Development Program of China, 973 Program, No. G2000057006
文摘AIM: To establish a simplified method for generating peptide-major histocompatibility complex (MHC) class I tetramers.METHODS: cDNAs encoding the extracellular domain of human lymphocyte antigen (HLA)-A*0201 heavy chain (A2) and β2-microglobulin (132m) from total RNA extracted from leukocytes of HLA-A2+ donors were doned into separate expression vectors by reverse transcription-polymerase chain reaction. The recombinant A2 and 132m proteins were expressed in ~/a oo/i^uain BL21(DE3) and recovered from the inclusion body fraction. Soluble A2 proteins loaded with specific antigen peptides were refolded by dilution from the heavy chain in the presence of light chain 132m and HLA-A2-restricted peptide antigens. The refolded A2 monomers were biotinylated with a commercial biotinylation enzyme (BirA) and purified by low pressure anion exchange chromatography on a Q-Sepharose (fast flow) column.The tetramers were then formed by mixing A2 monomers with streptavidin-PE in a molar ratio of 4:1. Flow cytometry was used to confirm the expected tetramer staining of CD8^+ T cells.RESULTS: Recombinant genes for HLA-A*0201 heavy chain (A2) fused to a BirA substrate peptide (A2-BSP) and mature β2m from HLA-A2+ donor leukocytes were successfully doned and highly expressed in E. coli, Two soluble monomeric A2-peptide complexes were reconstituted from A2-BSP in the presence of 132m and peptides loaded with either human cytomegalovirus pp65495-503 peptide (NLVPMVATV,NLV; designated as A2-NLV) or influenza virus matrix protein Mp58-66 peptide (GILGFVFTL, GIL; designated as A2-GIL). Refolded A2-NLV or A2-GIL monomers were biotinylated and highly purified by single step anion exchange column chromatography. The tetramers were then formed by mixing the biotinylated A2-NLV or A2-GIL monomers with streptavidin-PE, leading to more than 80% multiplicationas revealed by SDS-PAGE under non-reducing, unboiled conditions. Flow cytometry revealed that these tetramers could specifically bind to CD8^+ T cells from a HLA-A2^+ donor,but failed to bind to those from a HLA-A2- donor.CONCLUSION: The procedure is simple and efficient for generating peptide-MHC tetramers.
基金supported by grants from the Ministry of Science and Technology of China(2014CB910104)the National Natural Science Foundation of China(81171899+1 种基金81372230)the Claudia Adams Barr Program for Innovative Cancer Research
文摘Natural killer(NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex(MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor(CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.