金海四道三号桥位于温州滨海核心区,为滨湖风貌桥之一。主桥采用拱肋组合梁,跨径布置为30 m + 50 m + 30 m。文章以金海四道三号桥为背景,介绍了该桥相关的设计内容,分析了中跨边梁向侧上方外挑情况下,增设轻型拱肋对桥梁的影响。由分...金海四道三号桥位于温州滨海核心区,为滨湖风貌桥之一。主桥采用拱肋组合梁,跨径布置为30 m + 50 m + 30 m。文章以金海四道三号桥为背景,介绍了该桥相关的设计内容,分析了中跨边梁向侧上方外挑情况下,增设轻型拱肋对桥梁的影响。由分析结果可知,增设拱肋后,边梁正应力最大减少27.84%,挑臂正应力最大减少37.36%,相较于中梁正应力最大增加29.66%,增设轻型拱肋的收益更大,能有效优化桥梁整体应力,使结构更加安全,且拱肋本身的应力情况良好。Jinhai 4th Avenue Bridge No. 3 is located in the core area of Binhai in Wenzhou. It is one of the bridges with lakeside scenery. The main bridge adopts arch rib composite beams with a span arrangement of 30 m + 50 m + 30 m. Based on the background of the No. 3 Bridge, this paper introduces the related design contents of the bridge. The effect of adding light arch ribs on the bridge is analyzed when the mid-span side beam is lifted out from the side. The results show that the normal stress of the side beam and the outrigger arm are reduced by 27.84% and 37.36% respectively after the addition of arch ribs. Compared with the 29.66% increase in the normal stress of the middle beam, the addition of light arch ribs has greater benefits and can effectively optimize the overall stress of the bridge. The structure is more secure, and the stress of the arch rib itself is good.展开更多
为了比较大跨度铁路连续梁桥与梁拱组合桥梁轨相互作用特点,以(82.9+172.0+82.9)m连续梁桥与梁拱组合桥为例,分别建立考虑钢轨-主梁-桥墩-基础、钢轨-拱肋-吊杆-主梁-桥墩-基础这2种桥梁梁轨系统一体化有限元模型,系统对比温度、活载、...为了比较大跨度铁路连续梁桥与梁拱组合桥梁轨相互作用特点,以(82.9+172.0+82.9)m连续梁桥与梁拱组合桥为例,分别建立考虑钢轨-主梁-桥墩-基础、钢轨-拱肋-吊杆-主梁-桥墩-基础这2种桥梁梁轨系统一体化有限元模型,系统对比温度、活载、制动力、混凝土收缩徐变等作用下连续梁桥与梁拱组合桥上无缝线路纵向力的分布规律,并对线路纵向阻力、钢轨伸缩调节器设置等参数的影响进行探讨。研究结果表明:采用德国规范与中国无缝线路规范中的纵向阻力模型,连续梁桥钢轨伸缩力最大值与梁拱组合桥的钢轨伸缩力最大值相比分别大2.3%和2.0%;连续梁桥有载侧和无载侧钢轨最不利挠曲应力与梁拱组合桥的无载侧钢轨最不利挠曲应力相比均大67.8%;温度与断轨位置对断轨力影响显著;2类桥梁钢轨应力在同向列车制动与桥梁收缩徐变作用下变化规律与大小基本一致;对下部结构,连续梁桥对梁体升温敏感程度比连续梁拱桥的大,在挠曲工况下,两者墩顶水平力最大差为176.1 k N。展开更多
文摘金海四道三号桥位于温州滨海核心区,为滨湖风貌桥之一。主桥采用拱肋组合梁,跨径布置为30 m + 50 m + 30 m。文章以金海四道三号桥为背景,介绍了该桥相关的设计内容,分析了中跨边梁向侧上方外挑情况下,增设轻型拱肋对桥梁的影响。由分析结果可知,增设拱肋后,边梁正应力最大减少27.84%,挑臂正应力最大减少37.36%,相较于中梁正应力最大增加29.66%,增设轻型拱肋的收益更大,能有效优化桥梁整体应力,使结构更加安全,且拱肋本身的应力情况良好。Jinhai 4th Avenue Bridge No. 3 is located in the core area of Binhai in Wenzhou. It is one of the bridges with lakeside scenery. The main bridge adopts arch rib composite beams with a span arrangement of 30 m + 50 m + 30 m. Based on the background of the No. 3 Bridge, this paper introduces the related design contents of the bridge. The effect of adding light arch ribs on the bridge is analyzed when the mid-span side beam is lifted out from the side. The results show that the normal stress of the side beam and the outrigger arm are reduced by 27.84% and 37.36% respectively after the addition of arch ribs. Compared with the 29.66% increase in the normal stress of the middle beam, the addition of light arch ribs has greater benefits and can effectively optimize the overall stress of the bridge. The structure is more secure, and the stress of the arch rib itself is good.
文摘为了比较大跨度铁路连续梁桥与梁拱组合桥梁轨相互作用特点,以(82.9+172.0+82.9)m连续梁桥与梁拱组合桥为例,分别建立考虑钢轨-主梁-桥墩-基础、钢轨-拱肋-吊杆-主梁-桥墩-基础这2种桥梁梁轨系统一体化有限元模型,系统对比温度、活载、制动力、混凝土收缩徐变等作用下连续梁桥与梁拱组合桥上无缝线路纵向力的分布规律,并对线路纵向阻力、钢轨伸缩调节器设置等参数的影响进行探讨。研究结果表明:采用德国规范与中国无缝线路规范中的纵向阻力模型,连续梁桥钢轨伸缩力最大值与梁拱组合桥的钢轨伸缩力最大值相比分别大2.3%和2.0%;连续梁桥有载侧和无载侧钢轨最不利挠曲应力与梁拱组合桥的无载侧钢轨最不利挠曲应力相比均大67.8%;温度与断轨位置对断轨力影响显著;2类桥梁钢轨应力在同向列车制动与桥梁收缩徐变作用下变化规律与大小基本一致;对下部结构,连续梁桥对梁体升温敏感程度比连续梁拱桥的大,在挠曲工况下,两者墩顶水平力最大差为176.1 k N。