期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
自适应密度聚类组合数据清洗的LSTM风电功率预测
1
作者 潘鹏程 刘晖 王仁明 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期59-66,共8页
风电机运行产生的海量数据中包含大量不同运行情况下造成的异常值,这些数据会对风电功率预测等方面产生影响。为提高风电功率的预测精度,首先,通过建立自适应基于密度的聚类算法与K-均值聚类算法组合数据清洗算法删筛异常值;然后,建立... 风电机运行产生的海量数据中包含大量不同运行情况下造成的异常值,这些数据会对风电功率预测等方面产生影响。为提高风电功率的预测精度,首先,通过建立自适应基于密度的聚类算法与K-均值聚类算法组合数据清洗算法删筛异常值;然后,建立随机森林模型填补缺失值保证数据的完整性;最后,利用长短期记忆神经网络结合气象信息建立风电功率预测模型,并对某风电场实测数据进行风电功率短期预测。研究结果表明,所述方法清洗效率高,预测准确度均高于其他模型,具有良好的预测性能。 展开更多
关键词 组合数据清洗 风电功率预测 长短期记忆 短期预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部