This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) o...This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.展开更多
As the issues of security and stability of power systems are becoming increasingly significant,it is necessary to consider the constraints of the static voltage stability and transient stability,which are closely rela...As the issues of security and stability of power systems are becoming increasingly significant,it is necessary to consider the constraints of the static voltage stability and transient stability,which are closely related to the active power dispatch of power systems,in the daily power dispatch,i.e.the unit commitment.However,due to the complexity of these constraints and limitation of the existing analysis methods,there has been no unit commitment model reported so far that can deal with these security constraints.On the other hand,as lack of effective measures to evaluate the security margin of dispatch schemes,it is difficult for power system operators to integrate both the security and economy of power systems in unit commitment.To resolve the above-mentioned issues,a security region based security-constrained unit commitment model is presented in the paper,which gives consideration to both the security and economy of power systems.For the first time,the active power flow constraint,the static voltage stability constraint and the transient stability constraint are taken into account in unit commitment at the same time.The model presented in the paper takes the operating cost,the branch transmission capacity margin,the static voltage stability margin and the transient stability margin as sub-objectives.By adjusting the weighting factors of sub-objectives,it is convenient to adjust the preference on the security and economy of power systems and reach a balance.The IEEE RTS-24 test system is adopted to validate the correctness and the efficiency of the proposed model.展开更多
This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit,to provide the constant output for the grid system,even at the suddenly fluctuating/t...This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit,to provide the constant output for the grid system,even at the suddenly fluctuating/turbulent wind.In this paper,the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode,and the performances and the flow conditions were investigated numerically and experimentally.The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model.While providing the pump unit for the turbine mode,the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclu-sively for the turbine mode.Besides,the runner/impeller of the unit works evidently so as to coincide the angularmomentum change through the front runners/impellers with that through the rear runners/impellers,namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.展开更多
Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the r...Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.展开更多
文摘This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.
文摘As the issues of security and stability of power systems are becoming increasingly significant,it is necessary to consider the constraints of the static voltage stability and transient stability,which are closely related to the active power dispatch of power systems,in the daily power dispatch,i.e.the unit commitment.However,due to the complexity of these constraints and limitation of the existing analysis methods,there has been no unit commitment model reported so far that can deal with these security constraints.On the other hand,as lack of effective measures to evaluate the security margin of dispatch schemes,it is difficult for power system operators to integrate both the security and economy of power systems in unit commitment.To resolve the above-mentioned issues,a security region based security-constrained unit commitment model is presented in the paper,which gives consideration to both the security and economy of power systems.For the first time,the active power flow constraint,the static voltage stability constraint and the transient stability constraint are taken into account in unit commitment at the same time.The model presented in the paper takes the operating cost,the branch transmission capacity margin,the static voltage stability margin and the transient stability margin as sub-objectives.By adjusting the weighting factors of sub-objectives,it is convenient to adjust the preference on the security and economy of power systems and reach a balance.The IEEE RTS-24 test system is adopted to validate the correctness and the efficiency of the proposed model.
基金co-sponsored by Japan Society for the Promotion of Science KAKENHI23860035
文摘This serial research proposes the hybrid power system combined the wind power unit with the counter-rotating type pump-turbine unit,to provide the constant output for the grid system,even at the suddenly fluctuating/turbulent wind.In this paper,the tandem impellers of the counter-rotating type pumping unit was operated at the turbine mode,and the performances and the flow conditions were investigated numerically and experimentally.The 3-D turbulent flows in the runners were simulated at the steady state condition by using the commercial CFD code of ANSYS-CFX ver.12 with the SST turbulence model.While providing the pump unit for the turbine mode,the maximum hydraulic efficiency is close to one of the counter-rotating type hydroelectric unit designed exclu-sively for the turbine mode.Besides,the runner/impeller of the unit works evidently so as to coincide the angularmomentum change through the front runners/impellers with that through the rear runners/impellers,namely to take the axial flow at not only the inlet but also the outlet without the guide vanes.These results show that this type of unit is effective to work at not only the pumping but also the turbine modes.
基金the National Natural Science Foundation of China(No.51175321)the Innovation Program of Shanghai Municipal Education Commission(No.12ZZ158)
文摘Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples.