期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
一种组合类别信息的非负矩阵分解方法及其应用
1
作者 李勇智 杨静宇 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第7期1803-1807,共5页
基于非负矩阵分解理论,提出一种新的有监督的特征提取方法,它具有二个特点:一是在特征提取过程中它直接利用训练样本的类别信息,二是在计算上仍然采用与非负矩阵分解方法相同数学公式,因此这种新特征提取方法被称为组合类别信息的非负... 基于非负矩阵分解理论,提出一种新的有监督的特征提取方法,它具有二个特点:一是在特征提取过程中它直接利用训练样本的类别信息,二是在计算上仍然采用与非负矩阵分解方法相同数学公式,因此这种新特征提取方法被称为组合类别信息的非负矩阵分解(CINMF)方法。另外,在分类时本文提出了基于两种特征融合的分类策略进一步提高CINMF方法的识别率。通过在YALE人脸库和ORL人脸库上进行实验,结果表明本文提出的新方法在识别率方面整体上好于原非负矩阵分解方法,甚至超过常用的主成分分析法(PCA)。 展开更多
关键词 矩阵分解 组合类别信息的非负矩阵分解 特征提取 人脸识别
下载PDF
基于多种信息组合模式的非负矩阵分解链路预测模型 被引量:1
2
作者 唐明虎 《计算机应用研究》 CSCD 北大核心 2021年第5期1393-1397,1408,共6页
针对基于拓扑结构相似性的链路预测算法中网络稀疏性和噪声问题,提出一种基于非负矩阵分解的链路预测模型。该模型从微观与宏观两个层面出发,融合网络内部和外部的辅助信息,减轻了网络稀疏性造成的影响,提升了算法预测的整体性能。提出... 针对基于拓扑结构相似性的链路预测算法中网络稀疏性和噪声问题,提出一种基于非负矩阵分解的链路预测模型。该模型从微观与宏观两个层面出发,融合网络内部和外部的辅助信息,减轻了网络稀疏性造成的影响,提升了算法预测的整体性能。提出的三种信息组合模式体现出宏观与微观角度下的信息融合策略。在13个真实网络数据集上的实验结果展示了算法预测性能上的优越性。 展开更多
关键词 矩阵分解 有属性网络 信息融合 链路预测
下载PDF
融合先验信息的非负矩阵分解社区发现算法 被引量:6
3
作者 李国朋 潘志松 +1 位作者 姚清 李德毅 《模式识别与人工智能》 EI CSCD 北大核心 2016年第7期608-615,共8页
针对复杂网络社区发现问题,为了获得更准确、可解释性的社区划分结果,提出融合先验信息的半监督非负矩阵分解算法,给出优化目标的求解方法.文中算法利用先验信息直接约束社区指示矩阵,构造优化目标函数,获得更有意义的社区划分结果.真... 针对复杂网络社区发现问题,为了获得更准确、可解释性的社区划分结果,提出融合先验信息的半监督非负矩阵分解算法,给出优化目标的求解方法.文中算法利用先验信息直接约束社区指示矩阵,构造优化目标函数,获得更有意义的社区划分结果.真实数据集上的实验表明该算法的有效性,减小先验信息的融入对利用非负矩阵分解进行节点重要性等属性分析工作带来的不利影响,并且适用于加权和非加权等不同的网络. 展开更多
关键词 矩阵分解(NMF) 社区结构 先验信息 复杂网络
下载PDF
非负矩阵分解算法及其在生物信息学中的应用研究 被引量:6
4
作者 石金龙 骆志刚 《计算机工程与科学》 CSCD 北大核心 2010年第8期117-123,共7页
非负矩阵分解是近年来快速发展的一类机器学习算法,能够实现对高维数据的维度规约及局部特征提取,在诸多生物信息问题的分析与处理中得到了广泛应用,并衍生出一系列实用算法。本文系统分析了非负矩阵分解的数学理论基础及其特有的局部... 非负矩阵分解是近年来快速发展的一类机器学习算法,能够实现对高维数据的维度规约及局部特征提取,在诸多生物信息问题的分析与处理中得到了广泛应用,并衍生出一系列实用算法。本文系统分析了非负矩阵分解的数学理论基础及其特有的局部表达属性,综述了标准非负矩阵分解与各种衍生算法的发展历程及算法初始化与参数选取方法的研究进展,并从序列特征分析、表达模式与功能模块识别、生物医学文献挖掘等几个方面总结了非负矩阵分解算法在生物信息学领域的应用成果。最后,指出了非负矩阵分解算法研究及其应用于生物信息处理所面临的问题,分析和预测了可能的发展方向。 展开更多
关键词 矩阵分解 生物信息 局部特征
下载PDF
一种潜在信息约束的非负矩阵分解方法 被引量:2
5
作者 高新波 王笛 王秀美 《数据采集与处理》 CSCD 北大核心 2014年第1期11-18,共8页
传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后... 传统的非负矩阵分解方法没有充分利用数据间的内在相似性,从而影响了算法的性能。为此,本文提出一种潜在信息约束的非负矩阵分解方法。该方法首先利用迭代最近邻方法挖掘原始数据的潜在信息,然后利用潜在信息构造数据之间的相似图,最后将相似图作为约束项求得非负矩阵的最优分解。相似图的约束使得非负矩阵分解在降维过程中保持了原始数据之间的相似性关系,进而提高了非负矩阵分解的判别能力。图像聚类实验结果表明了该方法的有效性。 展开更多
关键词 数据降维 矩阵分解 潜在信息 相似图 迭代最近邻
下载PDF
基于非负矩阵分解的有向网络半监督社区检测 被引量:1
6
作者 杨士杰 帅阳 +1 位作者 韩超 张伟平 《计算机系统应用》 2024年第1期49-57,共9页
有向网络上的社区检测是网络科学领域一个重要的课题.针对这一问题,本文提出了一种基于非负矩阵分解的有向网络半监督社区检测算法,首先利用先验信息重构邻接矩阵,然后使用先验信息对节点的社区隶属度进行惩罚,并通过行归一化消除节点... 有向网络上的社区检测是网络科学领域一个重要的课题.针对这一问题,本文提出了一种基于非负矩阵分解的有向网络半监督社区检测算法,首先利用先验信息重构邻接矩阵,然后使用先验信息对节点的社区隶属度进行惩罚,并通过行归一化消除节点度异质性的影响,最后运用交替迭代更新给出了目标函数的求解方法.在真实网络数据上的对比实验验证了算法的有效性,相对于基于非负矩阵分解的现有方法,本文方法能显著提高社区发现的准确性. 展开更多
关键词 矩阵分解 有向网络 社区检测 先验信息
下载PDF
面向感兴趣类别的约束非负矩阵分解算法
7
作者 王立国 赵梓竣 《黑龙江大学自然科学学报》 CAS 北大核心 2015年第2期249-255,281,共7页
在处理高光谱数据解混问题中,非负矩阵分解是一种非常有效的方法之一。现有的非负矩阵分解方法一般是针对图中所有地物信息的盲分解,然而实际应用中常常并不需要求取全部地物类别的丰度信息。如果只考虑感兴趣类别,那么其它类别会对其... 在处理高光谱数据解混问题中,非负矩阵分解是一种非常有效的方法之一。现有的非负矩阵分解方法一般是针对图中所有地物信息的盲分解,然而实际应用中常常并不需要求取全部地物类别的丰度信息。如果只考虑感兴趣类别,那么其它类别会对其产生不可预测的干扰。针对干扰问题,提出了一种基于最小二乘算法预估计并结合最小距离的约束非负矩阵分解算法(LSMDCNMF)。实验表明,所提出的算法在不忽略非感兴趣类别的情况下,有效地提高了感兴趣类别的解混效果。 展开更多
关键词 混合像元 高光谱解混 矩阵分解 感兴趣类别
下载PDF
基于DCE-MRI影像组学非负矩阵分解的乳腺癌病理信息缺失填充研究 被引量:2
8
作者 付振宇 范明 厉力华 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第4期401-409,共9页
乳腺癌病理报告是乳腺癌诊断和治疗的主要依据,在实际诊疗过程中可能存在临床病理信息缺失的问题。利用动态增强磁共振影像(DCE-MRI)病灶区域的影像特征,结合对应乳腺癌患者的临床病理信息,建立影像组学非负矩阵分解填充模型,以实现对... 乳腺癌病理报告是乳腺癌诊断和治疗的主要依据,在实际诊疗过程中可能存在临床病理信息缺失的问题。利用动态增强磁共振影像(DCE-MRI)病灶区域的影像特征,结合对应乳腺癌患者的临床病理信息,建立影像组学非负矩阵分解填充模型,以实现对缺失的乳腺癌分子分型和细胞角蛋白5/6(CK5/6)基因表达信息的填充。共采集139例乳腺癌患者的术前或化疗前DCE-MRI影像及临床信息,随机划分89例为训练集、50例为测试集。对DCE-MRI影像进行肿瘤的分割,从病灶区域提取统计、形态和纹理特征。采用交叉验证的支持向量机递归特征消除(SVM-RFECV)法进行特征选择,并通过基于并集的方法进一步筛选影像特征,结合乳腺癌临床病理信息,建立非负矩阵分解(NMF)填充模型和协同过滤(CF)填充模型,并计算AUC评价模型的填充性能。当临床病理信息缺失率不同时,NMF模型的AUC值均高于CF模型的值,最高AUC为0.772,在缺失率20%~40%之间,NMF的填充效果要显著优于CF方法的效果(P<0.05);当使用不同数量的影像特征时,NMF模型的AUC值均高于CF模型的值,最高AUC为0.780,且在使用140个影像特征时二者的差异具有统计学意义(P<0.05)。实验表明,DCE-MRI影像组学结合非负矩阵分解方法,可对缺失的分子分型和CK5/6临床指标进行有效填充。 展开更多
关键词 乳腺癌 病理信息 动态增强磁共振影像 矩阵分解 矩阵填充
下载PDF
基于聚类信息和对称非负矩阵分解的链路预测模型研究 被引量:5
9
作者 陈广福 王海波 《计算机应用研究》 CSCD 北大核心 2021年第12期3733-3738,共6页
现有的大部分基于非负矩阵分解的链路预测方法仅考虑网络拓扑结构信息而忽略节点与链接聚类信息。针对此问题,提出一个融合聚类信息的对称非负矩阵分解的链路预测模型。首先,该模型利用对称非负矩阵分解去捕获网络节点相似度信息;其次,... 现有的大部分基于非负矩阵分解的链路预测方法仅考虑网络拓扑结构信息而忽略节点与链接聚类信息。针对此问题,提出一个融合聚类信息的对称非负矩阵分解的链路预测模型。首先,该模型利用对称非负矩阵分解去捕获网络节点相似度信息;其次,使用基于Jaccard的节点和链接聚类系数去保持网络局部结构信息;最后,启用拉格朗日乘法规则去学习模型参数。在六个真实无向无权和四个加权网络上的实验结果表明,该方法在两种不同类型网络预测精确度分别提升了1.6%和8.9%。 展开更多
关键词 复杂网络 链路预测 对称矩阵分解 节点和链接聚类信息
下载PDF
一种受限非负矩阵分解方法 被引量:10
10
作者 黄钢石 张亚非 +1 位作者 陆建江 徐宝文 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第2期189-193,共5页
提出一种获取潜在语义的受限非负矩阵分解方法 .通过在非负矩阵分解方法的目标函数上增加 3个约束条件来定义受限非负矩阵分解方法的目标函数 ,给出求解受限非负矩阵分解方法目标函数的迭代规则 ,并证明迭代规则的收敛性 .与非负矩阵分... 提出一种获取潜在语义的受限非负矩阵分解方法 .通过在非负矩阵分解方法的目标函数上增加 3个约束条件来定义受限非负矩阵分解方法的目标函数 ,给出求解受限非负矩阵分解方法目标函数的迭代规则 ,并证明迭代规则的收敛性 .与非负矩阵分解方法相比 ,受限非负矩阵分解方法能获取尽可能正交的潜在语义 .实验表明 ,受限非负矩阵分解方法在信息检索上的精度优于非负矩阵分解方法 . 展开更多
关键词 矩阵分解 受限矩阵分解 潜在语义 信息检索
下载PDF
基于非负矩阵分解的双重约束文本聚类算法 被引量:6
11
作者 马慧芳 赵卫中 史忠植 《计算机工程》 CAS CSCD 北大核心 2011年第24期161-163,共3页
提出一种基于非负矩阵分解(NMF)的双重约束文本聚类算法。在正交三重NMF模型中,加入文本空间的成对约束信息和词空间的类别约束信息,将不同的特征词项进行分类。利用迭代规则对原始的词-文档矩阵进行分解,获得文本聚类结果。与多种传统... 提出一种基于非负矩阵分解(NMF)的双重约束文本聚类算法。在正交三重NMF模型中,加入文本空间的成对约束信息和词空间的类别约束信息,将不同的特征词项进行分类。利用迭代规则对原始的词-文档矩阵进行分解,获得文本聚类结果。与多种传统半监督文本聚类算法的对比结果表明,该算法具有较高的聚类精度,能提供更准确和有效的聚类结果。 展开更多
关键词 半监督聚类 矩阵分解 成对约束 类别约束
下载PDF
利用约束非负矩阵分解的高光谱解混算法 被引量:19
12
作者 赵春晖 成宝芝 杨伟超 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第3期377-382,共6页
由于利用非负矩阵分解方法解决高光谱解混问题时,标准非负矩阵分解目标函数的非凸性影响了最优解的获取.通过对高光谱图像的端元光谱和空间分布特性的分析,提出了以最小估计丰度协方差和单形体各顶点到中心点均方距离总和最小约束的非... 由于利用非负矩阵分解方法解决高光谱解混问题时,标准非负矩阵分解目标函数的非凸性影响了最优解的获取.通过对高光谱图像的端元光谱和空间分布特性的分析,提出了以最小估计丰度协方差和单形体各顶点到中心点均方距离总和最小约束的非负矩阵分解(MCMDNMF)算法,其采用投影梯度作为非负矩阵分解的迭代学习规则.MCMDNMF既利用了非负矩阵分解的优点又考虑了高光谱图像的特性,也不需要混合像元中必须有纯像元.仿真实验表明,MCMD-NMF算法能正确地解混出高光谱混合像元中含有的端元光谱,并精确估计出丰度分布. 展开更多
关键词 信息处理技术 高光谱解混 矩阵分解 混合像元 丰度
下载PDF
基于自适应形态提升小波与改进非负矩阵分解的发动机故障诊断方法 被引量:23
13
作者 李兵 徐榕 +1 位作者 贾春宁 郭清晨 《兵工学报》 EI CAS CSCD 北大核心 2013年第3期353-360,共8页
信号处理与特征参数提取是实现发动机故障诊断的关键。针对传统小波和形态小波的缺陷,提出一种自适应形态梯度提升小波变换(AMGLW)。该方法采用信号的局部梯度作为判断信号奇异性的度量指标,在信号突变处采用提出的形态梯度提升算子以... 信号处理与特征参数提取是实现发动机故障诊断的关键。针对传统小波和形态小波的缺陷,提出一种自适应形态梯度提升小波变换(AMGLW)。该方法采用信号的局部梯度作为判断信号奇异性的度量指标,在信号突变处采用提出的形态梯度提升算子以保留信号的冲击特征,在信号缓变处采用平滑算子以抑制噪声。在此基础上,提出采用改进非负矩阵分解方法对分解后的信号进行特征提取,计算用于发动机故障分类的特征参数。利用实测的发动机在5种状态下的振动信号对提出的信号处理及特征提取方法进行了验证。 展开更多
关键词 信息处理技术 自适应形态提升小波 改进矩阵分解 发动机 故障诊断
下载PDF
局部敏感非负矩阵分解 被引量:5
14
作者 姜伟 杨炳儒 隋海峰 《计算机科学》 CSCD 北大核心 2010年第12期211-214,共4页
非负矩阵分解是一种新的基于部分学习的矩阵分解方法,反映了人类思维中局部构成整体的概念。算法只将非负矩阵近似地分解成两个非负矩阵的积,忽略了数据几何结构和判别信息。提出了一个局部敏感非负矩阵分解降维算法来克服这一缺点。该... 非负矩阵分解是一种新的基于部分学习的矩阵分解方法,反映了人类思维中局部构成整体的概念。算法只将非负矩阵近似地分解成两个非负矩阵的积,忽略了数据几何结构和判别信息。提出了一个局部敏感非负矩阵分解降维算法来克服这一缺点。该算法既保持了数据非负性,又保持了数据的几何结构和判别信息。构造了一个有效的乘积更新算法并且在理论上证明了算法的收敛性。ORL和Yale人脸数据库实验表明该算法性能超过许多已存在的方法。 展开更多
关键词 矩阵分解 局部敏感分析 判别信息 几何结构
下载PDF
非负矩阵分解及其在基因表达数据分析中的应用 被引量:13
15
作者 曹胜玉 刘来福 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第1期30-33,共4页
介绍非负矩阵分解的基本原理及其在生物信息学中基因表达数据分析中的应用.并将该方法用于一组白血病微阵列数据的聚类,得到了新的结果.
关键词 矩阵分解 生物信息 基因芯片 DNA微阵列
下载PDF
基于非负矩阵分解更新规则的部分可观察马尔可夫决策过程信念状态空间降维算法 被引量:1
16
作者 仵博 陈鑫 +1 位作者 郑红燕 冯延蓬 《电子与信息学报》 EI CSCD 北大核心 2013年第12期2901-2907,共7页
针对求解部分可观察马尔可夫决策过程(POMDP)规划问题时遭遇的"维数诅咒",该文提出了一种基于非负矩阵分解(NMF)更新规则的POMDP信念状态空间降维算法,分两步实现低误差高维降维。第1步,利用POMDP的结构特性,将状态、观察和... 针对求解部分可观察马尔可夫决策过程(POMDP)规划问题时遭遇的"维数诅咒",该文提出了一种基于非负矩阵分解(NMF)更新规则的POMDP信念状态空间降维算法,分两步实现低误差高维降维。第1步,利用POMDP的结构特性,将状态、观察和动作进行可分解表示,然后利用动态贝叶斯网络的条件独立对其转移函数进行分解压缩,并去除概率为零的取值,降低信念状态空间的稀疏性。第2步,采用信念状态空间值直接降维方法,使降维后求出的近似最优策略与原最优策略保持一致,使用NMF更新规则来更新信念状态空间,避免Krylov迭代,加快降维速度。该算法不仅保证降维前后值函数不发生改变,又保留了其分段线性凸特性。实验结果表明,该算法具有较低误差率和较高收敛性。 展开更多
关键词 信息处理 部分可观察马尔可夫决策过程 信念状态空间 矩阵分解 值直接压缩 维数灾
下载PDF
非负矩阵分解算法在胃癌基因表达数据分类中的应用 被引量:2
17
作者 蔡显圣 杜芳 《中国医疗设备》 2011年第4期28-32,共5页
依据基因表达数据,利用计算机技术对其样本进行分类并找到在肿瘤组织中特异表达的基因,使之能够对疾病的治疗和生物医学研究起到有益的参考和借鉴作用。本文采用非负矩阵分解算法,对基因表达数据进行分析,然后对分解后得到的基矩阵中各... 依据基因表达数据,利用计算机技术对其样本进行分类并找到在肿瘤组织中特异表达的基因,使之能够对疾病的治疗和生物医学研究起到有益的参考和借鉴作用。本文采用非负矩阵分解算法,对基因表达数据进行分析,然后对分解后得到的基矩阵中各集合基因进行比较,找出在肿瘤组织中有特异表达的基因,并做出生物解释。以胃癌基因表达数据为例进行实验,结果表明了该方法的可行性和有效性。 展开更多
关键词 矩阵分解算法 生物信息 基因表达数据 胃癌 集合基因
下载PDF
半监督凸非负矩阵分解
18
作者 张永清 董昊 《辽宁师范大学学报(自然科学版)》 CAS 2016年第4期451-457,共7页
基于流形正则化思想,提出了半监督凸非负矩阵分解算法.该算法通过类间图和类内图刻画数据的内在几何结构,使得所提算法不但具有数据矩阵凸分解特性,而且保持它的几何结构和判别信息.最后,人脸数据集上的实验研究表明所提算法能够获得良... 基于流形正则化思想,提出了半监督凸非负矩阵分解算法.该算法通过类间图和类内图刻画数据的内在几何结构,使得所提算法不但具有数据矩阵凸分解特性,而且保持它的几何结构和判别信息.最后,人脸数据集上的实验研究表明所提算法能够获得良好的识别性能. 展开更多
关键词 矩阵分解 判别信息 几何结构
下载PDF
改进增量式非负矩阵分解算法及其在人脸识别中的应用 被引量:1
19
作者 蔡竞 张嘉琪 钱康 《信息通信》 2016年第7期4-8,共5页
非负矩阵分解(NMF)是一种有效的子空间降维方法,凭借其可解释性在人脸识别方面有着较好的应用。而增量式非负矩阵分解(INMF)利用近似的原则将上一步迭代寻优的运算结果参与后续计算,有效改善了NMF算法运算规模随训练样本增多而不断增大... 非负矩阵分解(NMF)是一种有效的子空间降维方法,凭借其可解释性在人脸识别方面有着较好的应用。而增量式非负矩阵分解(INMF)利用近似的原则将上一步迭代寻优的运算结果参与后续计算,有效改善了NMF算法运算规模随训练样本增多而不断增大的现象。文章提出的改进增量式非负矩阵分解算法(Improved Incremental Non-negative Matrix Factorization)在INMF的基础上进一步利用了新加入样本的类别信息,优化了算法中参与迭代的增量系数向量的初始化值,使目标函数在迭代求解时具有更快的收敛速度和全局寻优能力。通过在ORL和YALE人脸数据库上的实验表明,该算法在运算速度和识别率上均优于传统的NMF算法和INMF算法。 展开更多
关键词 人脸识别 子空间降维 矩阵分解 增量学习 初始化 类别信息
下载PDF
基于特征融合的多约束非负矩阵分解算法 被引量:2
20
作者 孙静 蔡希彪 孙福明 《计算机应用》 CSCD 北大核心 2017年第10期2834-2840,共7页
针对非负矩阵分解后数据的稀疏性降低、单一图像特征不能够很好地描述图像内容的问题,提出一种基于特征融合的多约束非负矩阵分解算法。该算法不仅考虑了少量已知样本的标签信息和稀疏约束,还对其进行了图正则化处理,而且将分解后的具... 针对非负矩阵分解后数据的稀疏性降低、单一图像特征不能够很好地描述图像内容的问题,提出一种基于特征融合的多约束非负矩阵分解算法。该算法不仅考虑了少量已知样本的标签信息和稀疏约束,还对其进行了图正则化处理,而且将分解后的具有不同稀疏度的图像特征进行了融合,从而增强了算法的聚类性能和有效性。在Yale-32和COIL20数据集上进行的对比实验进一步验证了该算法具有更好的聚类精度和稀疏性。 展开更多
关键词 矩阵分解 标签信息 稀疏约束 图正则 特征融合
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部