Ubiquitous on earth,bacteriophages are the most abundant entities in every ecosystem,but human knowledge about them is still limited compared with that about other forms of organisms.To enrich human knowledge and prom...Ubiquitous on earth,bacteriophages are the most abundant entities in every ecosystem,but human knowledge about them is still limited compared with that about other forms of organisms.To enrich human knowledge and promote the utilization of bacteriophages,it is necessary to isolate and characterize as many as possible different bacteriophages.Here we describe the isolation of a T4-like bacteriophage IME08 and a rapid method for its genetic characterization.With this method we easily cloned a few random fragments of the bacteriophage genome.Sequence analysis of these random clones showed that bacteriophage IME08 shared the highest sequence similarity with T4-like Enterobacteria phage T4(94%identity),JS98(95% identity),JS10(95%identity) and RB14(94%identity) respectively,which suggested that IME08 belonged to T4-like bacteriophage genus.展开更多
Objective: We aimed to analysis the HER2 gene status and its relationship with p21 protein expression in gastric carcinoma. Methods: Fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC) techn...Objective: We aimed to analysis the HER2 gene status and its relationship with p21 protein expression in gastric carcinoma. Methods: Fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC) techniques were used to detect HER2 gene status and p53 protein in 59 cases of gastric cancer. Results: FISH detection of HER2 gene amplification rate was 16.9% (10/59), HER2 gene amplification in 49 cases without copy number gain and gene amplification were a total of 49.2% (29/59). HER2 protein expression was 42.4% (25/59), HER2 gene amplification rates in patients with +++, ++ HER2 protein expression were 3/3 and 5/8, while in patients with + HER2 protein expression, it was 2/14, there was significant difference (P 0.05). p21 protein expression rate was 49.2% (29/59), HER2 gene amplification rates and p21 protein expression had significant difference in tumor invasion depth, lymph node metastasis (P 0.05); had no statistical significance in histological type, age, gender differences (P 0.05). Conclusion: HER2 gene amplification rate and gene copy number had positively correlation with p21 protein expression, HER2 gene status and expression of p21 protein combined detection can provide a reference value in gastric cancer metastasis, patient’s condition development and prognosis, it also can guide clinical development of individual treatment.展开更多
AIM: To construct a recombinant murine CD40 ligand (mCD40L) eukaryotic expression vector for gene therapy and target therapy of hepatocellular carcinoma (HCC).METHODS: mCD40L cDNA was synthesized by RT-PCR with the sp...AIM: To construct a recombinant murine CD40 ligand (mCD40L) eukaryotic expression vector for gene therapy and target therapy of hepatocellular carcinoma (HCC).METHODS: mCD40L cDNA was synthesized by RT-PCR with the specific primers and directly cloned into T vector to generate middle recombinant. After digestion with restriction endonuclease, the target fragment was subcloned into the multi-clone sites of the eukaryotic vector. The constructed vector was verified by enzyme digestion and sequencing,and the product expressed was detected by RT-PCR and immunofluorescence methods.RESULTS: The full-length mCD40L-cDNA was successfully cloned into the eukaryotic vector through electrophoresis,and mCD40L gene was integrated into the genome of infected H22 cells by RT-PCR. Murine CD40L antigen molecule was observed in the plasma of mCD40L-H22 by indirect immuno-fluorescence staining.CONCLUSION: The recombined mCD40L eukaryotic expression vector can be expressed in H22 cell line. It providesexperimental data for gene therapy and target therapy ofhepatocellular carcinoma.展开更多
Social challenges from rival conspecifics are common in the lives of animals, and changes in an animal's social environment can influence physiology and behavior in ways that appear to be adaptive in the face of cont...Social challenges from rival conspecifics are common in the lives of animals, and changes in an animal's social environment can influence physiology and behavior in ways that appear to be adaptive in the face of continued social instability (i.e. social priming). Recently, it has become clear that testosterone, long thought to be the primary mediator of these effects, may not always change in response to social challenges, an observation that highlights gaps in our understanding of the proximate me- chanisms by which animals respond to their social environment. Here, our goal is to address the degree to which testosterone me- diates organismal responses to social cues. To this end, we review the behavioral and physiological consequences of social chal- lenges, as well as their underlying hormonal and gene regulatory mechanisms. We also present a new case study from a wild songbird, the dark-eyed junco Junco hyemalis, in which we find largely divergent genome-wide transcriptional changes induced by social challenges and testosterone, respectively, in muscle and liver tissue. Our review underscores the diversity of mechani- sms that link the dynamic social environment with an organisms' genomic, hormonal, and behavioral state. This diversity among species, and even among tissues within an organism, reveals new insights into the pattern and process by which evolution may alter proximate mechanisms of social priming.展开更多
Proteins are essential parts of living organisms and participate in virtually every process within cells. As the genomlc sequences for increasing number of organisms are completed, research into how proteins can perfo...Proteins are essential parts of living organisms and participate in virtually every process within cells. As the genomlc sequences for increasing number of organisms are completed, research into how proteins can perform such a variety of functions has become much more intensive because the value of the genomic sequences relies on the accuracy of understanding the encoded gene products. Although the static three-dimensional structures of many proteins are known, the functions of proteins are ulti- mately governed by their dynamic characteristics, including the folding process, conformational fluctuations, molecular mo- tions, and protein-ligand interactions. In this review, the physicochemical principles underlying these dynamic processes are discussed in depth based on the free energy landscape (FEL) theory. Questions of why and how proteins fold into their native conformational states, why proteins are inherently dynamic, and how their dynamic personalities govern protein functions are answered. This paper will contribute to the understanding of structure-function relationship of proteins in the post-genome era of life science research.展开更多
文摘Ubiquitous on earth,bacteriophages are the most abundant entities in every ecosystem,but human knowledge about them is still limited compared with that about other forms of organisms.To enrich human knowledge and promote the utilization of bacteriophages,it is necessary to isolate and characterize as many as possible different bacteriophages.Here we describe the isolation of a T4-like bacteriophage IME08 and a rapid method for its genetic characterization.With this method we easily cloned a few random fragments of the bacteriophage genome.Sequence analysis of these random clones showed that bacteriophage IME08 shared the highest sequence similarity with T4-like Enterobacteria phage T4(94%identity),JS98(95% identity),JS10(95%identity) and RB14(94%identity) respectively,which suggested that IME08 belonged to T4-like bacteriophage genus.
文摘Objective: We aimed to analysis the HER2 gene status and its relationship with p21 protein expression in gastric carcinoma. Methods: Fluorescence in situ hybridisation (FISH) and immunohistochemistry (IHC) techniques were used to detect HER2 gene status and p53 protein in 59 cases of gastric cancer. Results: FISH detection of HER2 gene amplification rate was 16.9% (10/59), HER2 gene amplification in 49 cases without copy number gain and gene amplification were a total of 49.2% (29/59). HER2 protein expression was 42.4% (25/59), HER2 gene amplification rates in patients with +++, ++ HER2 protein expression were 3/3 and 5/8, while in patients with + HER2 protein expression, it was 2/14, there was significant difference (P 0.05). p21 protein expression rate was 49.2% (29/59), HER2 gene amplification rates and p21 protein expression had significant difference in tumor invasion depth, lymph node metastasis (P 0.05); had no statistical significance in histological type, age, gender differences (P 0.05). Conclusion: HER2 gene amplification rate and gene copy number had positively correlation with p21 protein expression, HER2 gene status and expression of p21 protein combined detection can provide a reference value in gastric cancer metastasis, patient’s condition development and prognosis, it also can guide clinical development of individual treatment.
基金Supported by the Public Health Department Foundation of Hunan province, China, No. Y02-42
文摘AIM: To construct a recombinant murine CD40 ligand (mCD40L) eukaryotic expression vector for gene therapy and target therapy of hepatocellular carcinoma (HCC).METHODS: mCD40L cDNA was synthesized by RT-PCR with the specific primers and directly cloned into T vector to generate middle recombinant. After digestion with restriction endonuclease, the target fragment was subcloned into the multi-clone sites of the eukaryotic vector. The constructed vector was verified by enzyme digestion and sequencing,and the product expressed was detected by RT-PCR and immunofluorescence methods.RESULTS: The full-length mCD40L-cDNA was successfully cloned into the eukaryotic vector through electrophoresis,and mCD40L gene was integrated into the genome of infected H22 cells by RT-PCR. Murine CD40L antigen molecule was observed in the plasma of mCD40L-H22 by indirect immuno-fluorescence staining.CONCLUSION: The recombined mCD40L eukaryotic expression vector can be expressed in H22 cell line. It providesexperimental data for gene therapy and target therapy ofhepatocellular carcinoma.
文摘Social challenges from rival conspecifics are common in the lives of animals, and changes in an animal's social environment can influence physiology and behavior in ways that appear to be adaptive in the face of continued social instability (i.e. social priming). Recently, it has become clear that testosterone, long thought to be the primary mediator of these effects, may not always change in response to social challenges, an observation that highlights gaps in our understanding of the proximate me- chanisms by which animals respond to their social environment. Here, our goal is to address the degree to which testosterone me- diates organismal responses to social cues. To this end, we review the behavioral and physiological consequences of social chal- lenges, as well as their underlying hormonal and gene regulatory mechanisms. We also present a new case study from a wild songbird, the dark-eyed junco Junco hyemalis, in which we find largely divergent genome-wide transcriptional changes induced by social challenges and testosterone, respectively, in muscle and liver tissue. Our review underscores the diversity of mechani- sms that link the dynamic social environment with an organisms' genomic, hormonal, and behavioral state. This diversity among species, and even among tissues within an organism, reveals new insights into the pattern and process by which evolution may alter proximate mechanisms of social priming.
基金supported by the National Natural Science Foundation of China(31370715,31160181,31360277,30860011)the National Basic Research Program of China(2013CB127500)+1 种基金the Program of Innovation Group of Yunnan Province(2011CI123)Foundation for Key Teacher in Yunnan University(XT412003)
文摘Proteins are essential parts of living organisms and participate in virtually every process within cells. As the genomlc sequences for increasing number of organisms are completed, research into how proteins can perform such a variety of functions has become much more intensive because the value of the genomic sequences relies on the accuracy of understanding the encoded gene products. Although the static three-dimensional structures of many proteins are known, the functions of proteins are ulti- mately governed by their dynamic characteristics, including the folding process, conformational fluctuations, molecular mo- tions, and protein-ligand interactions. In this review, the physicochemical principles underlying these dynamic processes are discussed in depth based on the free energy landscape (FEL) theory. Questions of why and how proteins fold into their native conformational states, why proteins are inherently dynamic, and how their dynamic personalities govern protein functions are answered. This paper will contribute to the understanding of structure-function relationship of proteins in the post-genome era of life science research.