To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model,...To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model, which is analyzed by the mean field theory, is to optimize network structures based on users' behaviors in MANETs. The analysis results indicate that the network generated by this evolving model is a kind of scale-free network. This evolving model can improve the fault-tolerance performance of networks by balancing the connectivity and two factors, i.e., the remaining energy and the distance to nodes. The simulation results show that the evolving topology model has superior performance in reducing the traffic load and the energy consumption, prolonging network lifetime and improving the scalability of networks. It is an available approach for establishing and analyzing actual MANETs.展开更多
The design procedure is made for a mine shaft where permanent underground facilities are interconnected. The highly faulted grounds were identified using empirical and semi-empirical theories. Furthermore, the behavio...The design procedure is made for a mine shaft where permanent underground facilities are interconnected. The highly faulted grounds were identified using empirical and semi-empirical theories. Furthermore, the behavior types are presented. This paper presents excavation and support methods in such ground conditions and the calculations results show that the installation of the yielding elements have an effect on support elements and prevent shotcrete damage during the curing stage. Different numerical analyses carried out showed that, with the yielding elements installed, the total displacements increase but the final axial force reduces, and therefore, the characteristic compressive strength of shotcrete is not exceeded. The calculation results of ground loads and displacements on the designed support system are presented with a 3D numerical geo-mechanical model adopted for highly faulted ground surrounding deeper complex underground structures.展开更多
基金supported by National Science and Technology Major Project under Grant No. 2012ZX03004001the National Natural Science Foundation of China under Grant No. 60971083
文摘To accurately describe the evolving features of Mobile Ad Hoc Networks (MANETs) and to improve the performance of such networks, an evolving topology model with local-area preference is proposed. The aim of the model, which is analyzed by the mean field theory, is to optimize network structures based on users' behaviors in MANETs. The analysis results indicate that the network generated by this evolving model is a kind of scale-free network. This evolving model can improve the fault-tolerance performance of networks by balancing the connectivity and two factors, i.e., the remaining energy and the distance to nodes. The simulation results show that the evolving topology model has superior performance in reducing the traffic load and the energy consumption, prolonging network lifetime and improving the scalability of networks. It is an available approach for establishing and analyzing actual MANETs.
文摘The design procedure is made for a mine shaft where permanent underground facilities are interconnected. The highly faulted grounds were identified using empirical and semi-empirical theories. Furthermore, the behavior types are presented. This paper presents excavation and support methods in such ground conditions and the calculations results show that the installation of the yielding elements have an effect on support elements and prevent shotcrete damage during the curing stage. Different numerical analyses carried out showed that, with the yielding elements installed, the total displacements increase but the final axial force reduces, and therefore, the characteristic compressive strength of shotcrete is not exceeded. The calculation results of ground loads and displacements on the designed support system are presented with a 3D numerical geo-mechanical model adopted for highly faulted ground surrounding deeper complex underground structures.