The complexity of an elastic wavefield increases the nonlinearity of inversion, To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multisca...The complexity of an elastic wavefield increases the nonlinearity of inversion, To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multiscale strategy based on the simultaneous use of frequency groups and layer stripping method based on damped wave field improves the stability of inversion. A dual-level parallel algorithm is then used to decrease the computational cost and improve practicability. The seismic wave modeling of a single frequency and inversion in a frequency group are computed in parallel by multiple nodes based on multifrontal massively parallel sparse direct solver and MPI. Numerical tests using an overthrust model show that the proposed inversion algorithm can effectively improve the stability and accuracy of inversion by selecting the appropriate inversion frequency and damping factor in low- frequency seismic data.展开更多
Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesi...Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.展开更多
To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstruct...To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstructure,produced phases and damping capacities of the composites prepared with different particle size of B4C were characterized and analyzed.The results show that the reaction between B4C and Ti tends to be more complete when finer B_(4)C particle was used to prepare the composites.But the microstructure of the as-prepared composites is more homogenous when B4C and Ti have similar particle size.The strain-dependent damping capacities of(B_(4)C+Ti)/Mg composites improve gradually with the increase of strain amplitude,and composites prepared with coarser B4C particles tend to have higher damping capacities.The temperature-dependent damping capacities improve with increasing the measuring temperatures,and the kind of damping capacities of the composites prepared with 5mm B4C are inferior to those of coarser particles.The dominant damping mechanism for the strain-damping capacity is dislocation damping and plastic zone damping,while that for the temperature-damping capacity is interface damping or grain boundary damping.展开更多
The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be r...The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be referenced.In this study,we propose a feasible simulation method for obtaining multi-scale and multi-component digital cores based on three types of sandstone samples.In the proposed method,the plug and subplug samples are scanned via micro-computed tomography at different resolutions.Furthermore,the images are precisely registered using the proposed hybrid image registration method.In case of high-resolution images,the traditional segmentation method is used to segment the cores into pores and minerals.Subsequently,we established the relations between the gray values and the porosity/mineral content in case of the low-resolution images based on the registered domains and the relation curves were applied to the segmentation of the low-resolution images.The core images constitute the multi-scale and multi-component digital core models after segmentation.Further,the elastic properties of the three samples were simulated at both fine and coarse scales based on the multi-scale and multi-component digital core models,and four component models were considered.The results show that the multi-scale and multi-component digital core models can overcome the representative limits of the conventional digital core models and accurately characterize pores and minerals at different scales.The numerical results of the elastic modulus are more representative at large scales,and considerably reliable results can be obtained by appropriately considering the minerals.展开更多
The combined effects of equal channel angular pressing (ECAP) and subsequent heating to a semi-solid temperature on the microstructural characteristics of the 7075 aluminum alloy were investigated. The microstructure ...The combined effects of equal channel angular pressing (ECAP) and subsequent heating to a semi-solid temperature on the microstructural characteristics of the 7075 aluminum alloy were investigated. The microstructure is influenced by several parameters including the number of ECAP passes, ECAP route, consequent heating temperature, and holding time. The effects of these parameters on the microstructural characteristics including grain size and shape factor of the 7075 aluminum alloy were studied using experimental tests and Taguchi method. The results indicate that five-pass ECAP in route BA and subsequent isothermal holding at 630 °C for 15 min are more appropriate for achieving a semi-solid microstructure. The processing route and holding time have the highest impact on the grain size while the number of ECAP passes and heating temperature have the least impact on the grain size. Meanwhile, the shape factor is significantly influenced by the processing route, holding time and heating temperature while it is less influenced by the number of ECAP passes.展开更多
Using seasonally collected data(2009-2010) from 15 sampling sites that represent first- to fifth-order streams within the Qingyi watershed,we examined the spatio-temporal patterns of fish assemblages along two longitu...Using seasonally collected data(2009-2010) from 15 sampling sites that represent first- to fifth-order streams within the Qingyi watershed,we examined the spatio-temporal patterns of fish assemblages along two longitudinal gradients to explore the effects of a large dam on fish assemblages at the watershed scale.No significant variation was observed in either species richness or assemblage structure across seasons.Species richness significantly varied according to stream order and gradient.Dam construction appeared to decrease species richness upstream substantially,while a significant decrease between gradients only occurred within fourth-order streams.Along the gradient without the large dam,fish assemblage structures presented distinct separation between two neighboring stream orders,with the exception of fourth-order versus fifth-order streams.However,the gradient disrupted by a large dam displayed the opposite pattern in the spatial variation of fish assemblages related with stream orders.Significant between-gradient differences in fish assemblage structures were only observed within fourth-order streams.Species distributions were determined by local habitat environmental factors,including elevation,substrate,water depth,current discharge,wetted width,and conductivity.Our results suggested that dam construction might alter the longitudinal pattern in fish species richness and assemblage structure in Qingyi Stream,despite the localized nature of the ecological effect of dams.展开更多
An integrated simulation of powder effects on particle temperature and microstructural evolution in laser directed energy deposition additive manufacturing process was carried out.The spatial distribution of the flyin...An integrated simulation of powder effects on particle temperature and microstructural evolution in laser directed energy deposition additive manufacturing process was carried out.The spatial distribution of the flying powder particles was simulated by the discrete element method to calculate the energy for the flying powder particles under the laser−particle interaction with electromagnetic wave analysis.Combined with the phase field method,the influence of particle size on the microstructural evolution was studied.The microstructural evolution is validated through comparison with experimental observation.Results indicate that the narrow particle size distribution is beneficial to obtaining a more uniform temperature distribution on the deposited layers and forming smaller equiaxed grains near the side surfaces of the sample.Appropriate powder particle size is beneficial to the conversion of the electromagnetic energy into heat.Particles with small size are recommended to form equiaxed grains and to improve product quality.Appropriate powder flow rate improves the laser energy efficiency,and higher powder flow rate leads to more uniform equiaxed grains on both sides of the cross-section.展开更多
The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The resul...The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The results showed that the clay had some properties of areolian deposits, which could be compared with those of the loess in North China; and its chondrite normalized curves of REE were similar to those of the Xiashu loess, implying that they shared the same origin. It was concluded in combination with the results reported by other researchers that the Quaternary red clay of southern Anhui Province originated from aeolian deposits, and this could reveal the cycles of warm and cold climates in the area during the Quaternary period.展开更多
AZ91Mg alloy was considered and friction stir processing(FSP)was adopted to achieve grain refinement to investigatethe effect of grain size and secondary phase on machining characteristics during drilling at various s...AZ91Mg alloy was considered and friction stir processing(FSP)was adopted to achieve grain refinement to investigatethe effect of grain size and secondary phase on machining characteristics during drilling at various speeds and feeds.Super saturatedAZ91Mg alloy was obtained after FSP and the grain refinement was achieved from(166.5±8.7)μm to(21.7±13.5)μm.Surprisingly,hardness reduced for FSP AZ91Mg alloy(88.95±6.1)compared with AZ91alloy(108.2±15.6),which was attributed to the reducedsecondary phase.However,the mean cutting force for FSP-treated(FSPed)AZ91Mg alloy was marginally increased.The edgedamage of the drilled holes was lower for FSPed AZ91Mg alloy compared with unprocessed AZ91Mg alloy.Hence,it can beunderstood that the grain refinement may slightly increase the cutting forces during drilling but better edge finishing can be achievedin machining of AZ91Mg alloy.展开更多
Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodol...Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization.展开更多
A vast number of researches and studies have been conducted on narcissism, since the term was used to explain a psychological phenomenon in 1898. However, the discussions about narcissists as organization members or l...A vast number of researches and studies have been conducted on narcissism, since the term was used to explain a psychological phenomenon in 1898. However, the discussions about narcissists as organization members or leaders have recently become a research topic in the organizational sciences. In this scope, the recent research on narcissism indicates that narcissistic leaders can either cause organizational tragedies or contribute to organizational success by their great vision. In addition to narcissism, another popular leadership feature is political skill which has attracted considerable attentions in recent years, and become one of the important topics of management studies. Moreover, political skill has been asserted to be a positive characteristic which is related to develop vision and team insight as well as to increase in members' trust and support; whereas narcissism has both harmful and beneficial effects on organizations. In this study, the relationships between the dimensions of narcissism and political skill are examined via the 16-item Narcissistic Personality Inventory (NPI) and the 18-item Political Skill Inventory. Analysis has shown that the authority, which is the adaptive dimension of narcissism, correlates positively with social astuteness and networking ability dimensions of political skill. Accordingly entitlement, which is one of the maladaptive dimensions of narcissism, correlates significantly and negatively with the networking ability, interpersonal influence and apparent sincerity dimensions of political skill. When political skill is considered as a composite score, the findings indicate that the authority dimension of narcissism has a positive effect whereas, the entitlement dimension has a negative effect on political skill. Besides, implications for future studies are discussed展开更多
The microstructural evolution and precipitation location of the secondary phase of an as-cast Ti-25 V-15 Cr-0.3 Si titanium alloy were investigated via isothermal compression experiments and heat treatment. The averag...The microstructural evolution and precipitation location of the secondary phase of an as-cast Ti-25 V-15 Cr-0.3 Si titanium alloy were investigated via isothermal compression experiments and heat treatment. The average aspect(length-to-width) ratio, average area and size of the grains at different heat treatment temperatures and holding time were analyzed and the effects of deformation and annealing time on the grain area and size were considered. It was found that the grain size was strongly influenced by the height reduction and holding time. Grain growth was significant when annealing time increased from 10 min to 2 h at 950 °C and height reduction of 30%; however, grain growth was minimal at annealing time between 2 and 4 h. Many dispersion particles were observed to form in continuous chains; the precipitation location was confirmed to be along initial grain boundaries, and the dispersion particles were identified to be Ti5 Si3 phase by TEM.展开更多
This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a...This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a mechanic system including two-row planetary gear sets and their regular resistance conditions, an explicit model for calculating the partial ratios of coupled planetary gear sets was proposed. In addition, by giving this effective model, the partial ratios can be calculated simply and accurately.展开更多
This work concerns the optimization of furnace brazing conditions for joining micro-multiport aluminum tubes and fins made with AA4343/AA3003/AA4343 brazing sheet in mini-assemblies mimicking the core of an automotive...This work concerns the optimization of furnace brazing conditions for joining micro-multiport aluminum tubes and fins made with AA4343/AA3003/AA4343 brazing sheet in mini-assemblies mimicking the core of an automotive heat exchanger.Taguchi method was used for design of experiment,considering five process parameters with two levels of values.The aim was to maximize the fillet size of the brazed joints,which has an important influence on the thermal integrity and mechanical properties.Fillet length measurements of brazed joints were performed with a metallographic microscope.The statistical analysis allowed to obtain the optimum values of process parameters(peak temperature,residence time,heating rate,microchannel tube type and flux).At a 95%confidence level,the variability of fillet length is most significantly affected by the peak brazing temperature(77%),residence time(15%)and heating rate(7%).The predicted maximum fillet length was(152±11)μm,which was corroborated by confirmation trials.The microstructural analysis of tube−fin joints showed that variations in peak temperature and residence time affect only the size of the eutectic zone of fillet formed,but not the nature or composition of the constituent phases.展开更多
To deeply understand and even describe the evolutions of the low-energy twin boundary density(BLDΣ3n)in a thermal-plastic deformation process,an improved twin density model as a function of average grain size and sto...To deeply understand and even describe the evolutions of the low-energy twin boundary density(BLDΣ3n)in a thermal-plastic deformation process,an improved twin density model as a function of average grain size and stored energy is developed.For Nimonic 80A superalloy,the model is solved based on the EBSD statistical results of grain size and BLDΣ3n in the specimens compressed at temperatures of 1273−1423 K and strain rates of 0.001−10 s−1.The corresponding relationships of BLDΣ3n with stored energy and grain size varying with temperature and strain rate are clarified by the superimposed contour plot maps.It is summarized that BLDΣ3n increases with increasing stored energy and decreasing grain size,and higher BLDΣ3n with finer grains corresponds with lower temperatures and higher strain rates.Such relationships are described by the improved twin density model,and the prediction tolerance of the solved model is limited in 2.8%.展开更多
基金supported by the Natural Science Foundation of China(No.41374122)
文摘The complexity of an elastic wavefield increases the nonlinearity of inversion, To some extent, multiscale inversion decreases the nonlinearity of inversion and prevents it from falling into local extremes. A multiscale strategy based on the simultaneous use of frequency groups and layer stripping method based on damped wave field improves the stability of inversion. A dual-level parallel algorithm is then used to decrease the computational cost and improve practicability. The seismic wave modeling of a single frequency and inversion in a frequency group are computed in parallel by multiple nodes based on multifrontal massively parallel sparse direct solver and MPI. Numerical tests using an overthrust model show that the proposed inversion algorithm can effectively improve the stability and accuracy of inversion by selecting the appropriate inversion frequency and damping factor in low- frequency seismic data.
基金supported by the National Natural Science Foundation of China (21373272)~~
文摘Platinum and palladium(PtPd)alloy nanoparticles(NPs)are excellent catalysts for direct methanol fuel cells.In this study,we developed PtPd alloy NPs through the co‐reduction of K2PtCl4and Na2PdCl4in a polyol synthesis environment.During the reaction,the feed molar ratio of the two precursors was carried over to the final products,which have a narrow size distribution with a mean size of approximately4nm.The catalytic activity for methanol oxidation reactions possible depends closely on the composition of as‐prepared PtPd alloy NPs,and the NPs with a Pt atomic percentage of approximately75%result in higher activity and stability with a mass specific activity that is7times greater than that of commercial Pt/C catalysts.The results indicate that through composition control,PtPd alloy NPs can improve the effectiveness of catalytic performance.
基金Project(51901095)supported by the National Natural Science Foundation of China。
文摘To study the influence of B4C particle size on the microstructure and damping capacities of(B_(4)C+Ti)/Mg composites,in situ reactive infiltration technique was utilized to prepare Mg-matrix composites.The microstructure,produced phases and damping capacities of the composites prepared with different particle size of B4C were characterized and analyzed.The results show that the reaction between B4C and Ti tends to be more complete when finer B_(4)C particle was used to prepare the composites.But the microstructure of the as-prepared composites is more homogenous when B4C and Ti have similar particle size.The strain-dependent damping capacities of(B_(4)C+Ti)/Mg composites improve gradually with the increase of strain amplitude,and composites prepared with coarser B4C particles tend to have higher damping capacities.The temperature-dependent damping capacities improve with increasing the measuring temperatures,and the kind of damping capacities of the composites prepared with 5mm B4C are inferior to those of coarser particles.The dominant damping mechanism for the strain-damping capacity is dislocation damping and plastic zone damping,while that for the temperature-damping capacity is interface damping or grain boundary damping.
基金supported by the National Natural Science Foundation of China Research(Nos.41574122 and 41374124)National Science and Technology major Project(No.2016ZX05006002-004)。
文摘The conventional digital core models are usually small in size and have difficulty in representing the complex structures of heterogeneous rocks;Therefore,the parameters of simulated rock physics are difficult to be referenced.In this study,we propose a feasible simulation method for obtaining multi-scale and multi-component digital cores based on three types of sandstone samples.In the proposed method,the plug and subplug samples are scanned via micro-computed tomography at different resolutions.Furthermore,the images are precisely registered using the proposed hybrid image registration method.In case of high-resolution images,the traditional segmentation method is used to segment the cores into pores and minerals.Subsequently,we established the relations between the gray values and the porosity/mineral content in case of the low-resolution images based on the registered domains and the relation curves were applied to the segmentation of the low-resolution images.The core images constitute the multi-scale and multi-component digital core models after segmentation.Further,the elastic properties of the three samples were simulated at both fine and coarse scales based on the multi-scale and multi-component digital core models,and four component models were considered.The results show that the multi-scale and multi-component digital core models can overcome the representative limits of the conventional digital core models and accurately characterize pores and minerals at different scales.The numerical results of the elastic modulus are more representative at large scales,and considerably reliable results can be obtained by appropriately considering the minerals.
文摘The combined effects of equal channel angular pressing (ECAP) and subsequent heating to a semi-solid temperature on the microstructural characteristics of the 7075 aluminum alloy were investigated. The microstructure is influenced by several parameters including the number of ECAP passes, ECAP route, consequent heating temperature, and holding time. The effects of these parameters on the microstructural characteristics including grain size and shape factor of the 7075 aluminum alloy were studied using experimental tests and Taguchi method. The results indicate that five-pass ECAP in route BA and subsequent isothermal holding at 630 °C for 15 min are more appropriate for achieving a semi-solid microstructure. The processing route and holding time have the highest impact on the grain size while the number of ECAP passes and heating temperature have the least impact on the grain size. Meanwhile, the shape factor is significantly influenced by the processing route, holding time and heating temperature while it is less influenced by the number of ECAP passes.
基金Foundation items: This study was financially supported by the National Basic Research Program of China (2009CB119200) and the Natural Science Foundation of China (31071900, 31172120)
文摘Using seasonally collected data(2009-2010) from 15 sampling sites that represent first- to fifth-order streams within the Qingyi watershed,we examined the spatio-temporal patterns of fish assemblages along two longitudinal gradients to explore the effects of a large dam on fish assemblages at the watershed scale.No significant variation was observed in either species richness or assemblage structure across seasons.Species richness significantly varied according to stream order and gradient.Dam construction appeared to decrease species richness upstream substantially,while a significant decrease between gradients only occurred within fourth-order streams.Along the gradient without the large dam,fish assemblage structures presented distinct separation between two neighboring stream orders,with the exception of fourth-order versus fifth-order streams.However,the gradient disrupted by a large dam displayed the opposite pattern in the spatial variation of fish assemblages related with stream orders.Significant between-gradient differences in fish assemblage structures were only observed within fourth-order streams.Species distributions were determined by local habitat environmental factors,including elevation,substrate,water depth,current discharge,wetted width,and conductivity.Our results suggested that dam construction might alter the longitudinal pattern in fish species richness and assemblage structure in Qingyi Stream,despite the localized nature of the ecological effect of dams.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.11572074)the Liaoning Provincial Natural Science Foundation,China(No.2019-KF-05-07)。
文摘An integrated simulation of powder effects on particle temperature and microstructural evolution in laser directed energy deposition additive manufacturing process was carried out.The spatial distribution of the flying powder particles was simulated by the discrete element method to calculate the energy for the flying powder particles under the laser−particle interaction with electromagnetic wave analysis.Combined with the phase field method,the influence of particle size on the microstructural evolution was studied.The microstructural evolution is validated through comparison with experimental observation.Results indicate that the narrow particle size distribution is beneficial to obtaining a more uniform temperature distribution on the deposited layers and forming smaller equiaxed grains near the side surfaces of the sample.Appropriate powder particle size is beneficial to the conversion of the electromagnetic energy into heat.Particles with small size are recommended to form equiaxed grains and to improve product quality.Appropriate powder flow rate improves the laser energy efficiency,and higher powder flow rate leads to more uniform equiaxed grains on both sides of the cross-section.
文摘The particle size distribution, heavy mineral constituents and rare earth elements (REE) characteristics of the Quaternary red clay of southern Anhui Province were studied to explore the origin of the clay. The results showed that the clay had some properties of areolian deposits, which could be compared with those of the loess in North China; and its chondrite normalized curves of REE were similar to those of the Xiashu loess, implying that they shared the same origin. It was concluded in combination with the results reported by other researchers that the Quaternary red clay of southern Anhui Province originated from aeolian deposits, and this could reveal the cycles of warm and cold climates in the area during the Quaternary period.
文摘AZ91Mg alloy was considered and friction stir processing(FSP)was adopted to achieve grain refinement to investigatethe effect of grain size and secondary phase on machining characteristics during drilling at various speeds and feeds.Super saturatedAZ91Mg alloy was obtained after FSP and the grain refinement was achieved from(166.5±8.7)μm to(21.7±13.5)μm.Surprisingly,hardness reduced for FSP AZ91Mg alloy(88.95±6.1)compared with AZ91alloy(108.2±15.6),which was attributed to the reducedsecondary phase.However,the mean cutting force for FSP-treated(FSPed)AZ91Mg alloy was marginally increased.The edgedamage of the drilled holes was lower for FSPed AZ91Mg alloy compared with unprocessed AZ91Mg alloy.Hence,it can beunderstood that the grain refinement may slightly increase the cutting forces during drilling but better edge finishing can be achievedin machining of AZ91Mg alloy.
文摘Determination of homogenous precipitation-based regions is a very important task in effective management of water resources. The present study tried to propose an effective precipitation-based regionalization methodology by conjugating both temporal pre-processing and spatial clustering approaches in a way to take advantage of multiscale properties of precipitation time series. Annual precipitation data of 51 years(1960-2010) for 31 rain gauges(RGs) were collected and used in proposed clustering approaches. Discreet wavelet transform(DWT) was used to capture the time-frequency attributes of the time series and multiscale regionalization was performed by using k-means and Self Organizing Maps(SOM) clustering techniques. Daubechies function(db) was selected as mother wavelet to decompose the precipitation time series. Also, proper boundary extensions and decomposition level were applied. Different combinations of the approximation(A) and detail(D) coefficients were used to determine the input dataset as a basis of spatial clustering. The proposed model's efficiency in spatial clustering stage was verified using three different indexes namely, Silhouette Coefficient(SC), Dunn index and Davis Bouldin index(DB). Results approved superior performance of k-means technique in comparison to SOM. It was also deduced that DWT-based regionalization methodology showed improvements in comparison to historical-based models. Cross mutual information was used to investigate the RGs of cluster 3's homogeneousness in DWT-k-means approach. Results of non-linear correlation approach verified homogeneity of cluster 3. Verifications based on mean annual precipitation values of rain gauges in each cluster also approved the capability of multiscale approach in precipitation regionalization.
文摘A vast number of researches and studies have been conducted on narcissism, since the term was used to explain a psychological phenomenon in 1898. However, the discussions about narcissists as organization members or leaders have recently become a research topic in the organizational sciences. In this scope, the recent research on narcissism indicates that narcissistic leaders can either cause organizational tragedies or contribute to organizational success by their great vision. In addition to narcissism, another popular leadership feature is political skill which has attracted considerable attentions in recent years, and become one of the important topics of management studies. Moreover, political skill has been asserted to be a positive characteristic which is related to develop vision and team insight as well as to increase in members' trust and support; whereas narcissism has both harmful and beneficial effects on organizations. In this study, the relationships between the dimensions of narcissism and political skill are examined via the 16-item Narcissistic Personality Inventory (NPI) and the 18-item Political Skill Inventory. Analysis has shown that the authority, which is the adaptive dimension of narcissism, correlates positively with social astuteness and networking ability dimensions of political skill. Accordingly entitlement, which is one of the maladaptive dimensions of narcissism, correlates significantly and negatively with the networking ability, interpersonal influence and apparent sincerity dimensions of political skill. When political skill is considered as a composite score, the findings indicate that the authority dimension of narcissism has a positive effect whereas, the entitlement dimension has a negative effect on political skill. Besides, implications for future studies are discussed
基金Projects(51501122,51604181) supported by the National Natural Science Foundation of ChinaProject(20172009) supported by the Postdoctoral Sustentation Fund of Taiyuan University of Science and Technology,China+3 种基金Project(20132016) supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(201501004-8) supported by the Jincheng Science and Technology Plan Project,ChinaProject(U1510131) supported by NSFC-Shanxi Coal-based Low-carbon United Fund and"Shanxi Young Scholars"Program,ChinaProject(201603D121010) supported by Key R&D Program of Shanxi Province,China
文摘The microstructural evolution and precipitation location of the secondary phase of an as-cast Ti-25 V-15 Cr-0.3 Si titanium alloy were investigated via isothermal compression experiments and heat treatment. The average aspect(length-to-width) ratio, average area and size of the grains at different heat treatment temperatures and holding time were analyzed and the effects of deformation and annealing time on the grain area and size were considered. It was found that the grain size was strongly influenced by the height reduction and holding time. Grain growth was significant when annealing time increased from 10 min to 2 h at 950 °C and height reduction of 30%; however, grain growth was minimal at annealing time between 2 and 4 h. Many dispersion particles were observed to form in continuous chains; the precipitation location was confirmed to be along initial grain boundaries, and the dispersion particles were identified to be Ti5 Si3 phase by TEM.
文摘This paper presents a new study on optimum determination of the partial ratios of coupled planetary gear sets for getting minimum radial size of the gear sets. In this paper, based on moment equilibrium condition of a mechanic system including two-row planetary gear sets and their regular resistance conditions, an explicit model for calculating the partial ratios of coupled planetary gear sets was proposed. In addition, by giving this effective model, the partial ratios can be calculated simply and accurately.
文摘This work concerns the optimization of furnace brazing conditions for joining micro-multiport aluminum tubes and fins made with AA4343/AA3003/AA4343 brazing sheet in mini-assemblies mimicking the core of an automotive heat exchanger.Taguchi method was used for design of experiment,considering five process parameters with two levels of values.The aim was to maximize the fillet size of the brazed joints,which has an important influence on the thermal integrity and mechanical properties.Fillet length measurements of brazed joints were performed with a metallographic microscope.The statistical analysis allowed to obtain the optimum values of process parameters(peak temperature,residence time,heating rate,microchannel tube type and flux).At a 95%confidence level,the variability of fillet length is most significantly affected by the peak brazing temperature(77%),residence time(15%)and heating rate(7%).The predicted maximum fillet length was(152±11)μm,which was corroborated by confirmation trials.The microstructural analysis of tube−fin joints showed that variations in peak temperature and residence time affect only the size of the eutectic zone of fillet formed,but not the nature or composition of the constituent phases.
基金the financial supports from Chongqing Basic Research and Frontier Exploration Program, China (cstc2018jcyj AX0459)the Fundamental Research Funds for the Central Universities, China (2019CDQYTM027, 2019CDJGFCL003, 2018CDPTCG0001-6)Open Fund of State Key Laboratory of Materials Processing and Die & Mould Technology, China (P2020-001)
文摘To deeply understand and even describe the evolutions of the low-energy twin boundary density(BLDΣ3n)in a thermal-plastic deformation process,an improved twin density model as a function of average grain size and stored energy is developed.For Nimonic 80A superalloy,the model is solved based on the EBSD statistical results of grain size and BLDΣ3n in the specimens compressed at temperatures of 1273−1423 K and strain rates of 0.001−10 s−1.The corresponding relationships of BLDΣ3n with stored energy and grain size varying with temperature and strain rate are clarified by the superimposed contour plot maps.It is summarized that BLDΣ3n increases with increasing stored energy and decreasing grain size,and higher BLDΣ3n with finer grains corresponds with lower temperatures and higher strain rates.Such relationships are described by the improved twin density model,and the prediction tolerance of the solved model is limited in 2.8%.