Microsatellite markers have become one kind of the most important molecular tools used in various researches. A large number of microsatellite markers are required for the whole genome survey in the fields of molecula...Microsatellite markers have become one kind of the most important molecular tools used in various researches. A large number of microsatellite markers are required for the whole genome survey in the fields of molecular ecology,quantitative genetics and genomics. Therefore,it is extremely necessary to select several versatile,low-cost,efficient and time-and labor-saving methods to develop a large panel of microsatellite markers. In this study,we used Zhikong scallop(Chlamys farreri) as the target species to compare the efficiency of the five methods derived from three strategies for microsatellite marker development. The results showed that the strategy of constructing small insert genomic DNA library resulted in poor efficiency,while the microsatellite-enriched strategy highly improved the isolation efficiency. Although the mining public database strategy is time-and cost-saving,it is difficult to obtain a large number of microsatellite markers,mainly due to the limited sequence data of non-model species deposited in public databases. Based on the results in this study,we recommend two methods,microsatellite-enriched library construction method and FIASCO-colony hybridization method,for large-scale microsatellite marker development. Both methods were derived from the microsatellite-enriched strategy. The experimental results obtained from Zhikong scallop also provide the reference for microsatellite marker development in other species with large genomes.展开更多
Turbot (Scophthalmus maximus) is a flatfish species commercially important for aquaculture. In this study, we generated a microsatellite-enriched genomic DNA library for Scophthalmus rnaxirnus, and then isolated and...Turbot (Scophthalmus maximus) is a flatfish species commercially important for aquaculture. In this study, we generated a microsatellite-enriched genomic DNA library for Scophthalmus rnaxirnus, and then isolated and characterized 45 microsateIIite loci by genotyping 30 individuals. The observed number of alleles ranged from 2 to 19 with an average of 6.24, while the effective number of alleles ranged from 1.30 to 11.11 with an average of 3.66. The expected heterozygosities varied from 0.235 to 0.9254 and polymorphic information content ranged from 0.204 4 to 0.903 3, with an average of 0.622. Twelve loci deviated significantly from Hardy-Weinberg equilibrium, and no significant linkage disequilibrium was observed between any pair of loci after Bonferroni correction. In cross-species amplification, five flatfish species (Paralichthys lethostigma, Verasper rnoseri, platichthys stellatus, Hippoglossoides dubius and Cynoglossus semilaevis) showed at least one polymorphic locus. These polymorphic microsatellite loci should prove useful for population analysis of turbot and other related species.展开更多
基金supported by ‘863’ Program (2006AA10A408 and 2006AA10A411), NSFC30571417, NYHYZX07-047, 2005DKA30470, 2006BAD09A10 and NCET-06-0594.
文摘Microsatellite markers have become one kind of the most important molecular tools used in various researches. A large number of microsatellite markers are required for the whole genome survey in the fields of molecular ecology,quantitative genetics and genomics. Therefore,it is extremely necessary to select several versatile,low-cost,efficient and time-and labor-saving methods to develop a large panel of microsatellite markers. In this study,we used Zhikong scallop(Chlamys farreri) as the target species to compare the efficiency of the five methods derived from three strategies for microsatellite marker development. The results showed that the strategy of constructing small insert genomic DNA library resulted in poor efficiency,while the microsatellite-enriched strategy highly improved the isolation efficiency. Although the mining public database strategy is time-and cost-saving,it is difficult to obtain a large number of microsatellite markers,mainly due to the limited sequence data of non-model species deposited in public databases. Based on the results in this study,we recommend two methods,microsatellite-enriched library construction method and FIASCO-colony hybridization method,for large-scale microsatellite marker development. Both methods were derived from the microsatellite-enriched strategy. The experimental results obtained from Zhikong scallop also provide the reference for microsatellite marker development in other species with large genomes.
基金Supported by the Fund for Modern Agro-Industry Technology Research System (No. nycytx-50)the National Sustainability Plan of China (No. 2006BAD01A12012)+1 种基金the Agriculture Commonwealth Scientific Research Plan (No. nyhyzx07-046)the Yellow Sea Fisheries Research Institute Scientific and Research Fund (No. 2009-ts-11)
文摘Turbot (Scophthalmus maximus) is a flatfish species commercially important for aquaculture. In this study, we generated a microsatellite-enriched genomic DNA library for Scophthalmus rnaxirnus, and then isolated and characterized 45 microsateIIite loci by genotyping 30 individuals. The observed number of alleles ranged from 2 to 19 with an average of 6.24, while the effective number of alleles ranged from 1.30 to 11.11 with an average of 3.66. The expected heterozygosities varied from 0.235 to 0.9254 and polymorphic information content ranged from 0.204 4 to 0.903 3, with an average of 0.622. Twelve loci deviated significantly from Hardy-Weinberg equilibrium, and no significant linkage disequilibrium was observed between any pair of loci after Bonferroni correction. In cross-species amplification, five flatfish species (Paralichthys lethostigma, Verasper rnoseri, platichthys stellatus, Hippoglossoides dubius and Cynoglossus semilaevis) showed at least one polymorphic locus. These polymorphic microsatellite loci should prove useful for population analysis of turbot and other related species.