期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
组移动模式挖掘中轨迹聚类的置信区间法 被引量:1
1
作者 蒋夏军 皮德常 张育平 《中国科技论文》 CAS 北大核心 2013年第10期981-985,共5页
在借鉴空间数据挖掘技术的基础上,定义了移动对象轨迹之间的时态距离和平均距离,提出了标准差法和置信区间法两种轨迹聚类算法。两种方法能够找出所有具有相似轨迹的对象对,在不同距离采样点数的基础上配合使用两种方法能够明显降低轨... 在借鉴空间数据挖掘技术的基础上,定义了移动对象轨迹之间的时态距离和平均距离,提出了标准差法和置信区间法两种轨迹聚类算法。两种方法能够找出所有具有相似轨迹的对象对,在不同距离采样点数的基础上配合使用两种方法能够明显降低轨迹聚类算法的时间复杂度。基于标准差法和置信区间法的轨迹聚类算法在仿真数据集和真实数据集进行了验证。表明两种方法能够为其他轨迹聚类算法进行数据筛选,筛选后的数据量将大大减少,从而可提高算法效率。 展开更多
关键词 知识工程 轨迹聚类 组模式挖掘 置信区间 时空数据挖掘
下载PDF
Coteries轨迹模式挖掘及个性化旅游路线推荐 被引量:12
2
作者 李晓旭 于亚新 +1 位作者 张文超 王磊 《软件学报》 EI CSCD 北大核心 2018年第3期587-598,共12页
Coterie是一种异步的组模式,要求在不等时间间隔约束下,找出具有相似轨迹行为的组模式.而传统的轨迹组模式挖掘算法往往处理具有固定时间间隔采样约束的GPS数据,因此无法直接用于Coterie模式挖掘.同时,传统组模式挖掘存在语义信息缺失问... Coterie是一种异步的组模式,要求在不等时间间隔约束下,找出具有相似轨迹行为的组模式.而传统的轨迹组模式挖掘算法往往处理具有固定时间间隔采样约束的GPS数据,因此无法直接用于Coterie模式挖掘.同时,传统组模式挖掘存在语义信息缺失问题,降低了个性化旅游路线推荐的完整度和准确度.为此,提出基于语义的距离敏感推荐策略DRSS(distance-aware recommendation strategy based on semantics)和基于语义的从众性推荐策略CRSS(conformity-aware recommendation strategy based on semantics).此外,随着社交网数据规模的不断增大,传统组模式聚类算法的效率受到极大的挑战,因此,为了高效处理大规模社交网轨迹数据,使用带有优化聚类的MapReduce编程模型来挖掘Coterie组模式.实验结果表明:MapReduce编程模型下带优化聚类和语义信息的Coterie组模式挖掘,在个性化旅游路线推荐上优于传统组模式旅游路线推荐质量,且能够有效处理大规模社交网轨迹数据. 展开更多
关键词 组模式挖掘 Coterie模式 MAPREDUCE 优化聚类 语义路线推荐
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部