高光谱图像混合噪声去除是遥感领域的一个基本问题,也是一个重要的预处理步骤。本研究针对高光谱图像去噪问题,为有效地对高光谱图像进行恢复,提出了一种基于重叠组稀疏性超拉普拉斯正则化(OGS-HL)的新型去噪方法。该方法可以有效捕捉...高光谱图像混合噪声去除是遥感领域的一个基本问题,也是一个重要的预处理步骤。本研究针对高光谱图像去噪问题,为有效地对高光谱图像进行恢复,提出了一种基于重叠组稀疏性超拉普拉斯正则化(OGS-HL)的新型去噪方法。该方法可以有效捕捉图像的局部相关性和方向性结构,同时减少传统全变分正则化中的阶梯伪影。通过乘子交替方向法求解非凸优化问题,显著提高了去噪效率。在多个遥感图像数据集上的仿真实验表明,所提方法在峰值信噪比(PSNR)和结构相似度(SSIM)等评价指标上优于现有技术,展现了在复杂噪声环境下的优越去噪性能和广泛的应用潜力。The removal of mixed noise from hyperspectral images is a fundamental issue in the field of remote sensing and an important preprocessing step. This study focuses on the denoising problem of hyperspectral images. To effectively restore hyperspectral images, a new denoising method based on Overlap Group Sparse Hyper Laplacian Regularization (OGS-HL) is proposed. This method can effectively capture the local correlation and directional structure of images, while reducing the step artifacts in traditional total variation regularization. By using the alternating direction method of multipliers to solve non-convex optimization problems, the denoising efficiency has been significantly improved. Simulation experiments on multiple remote sensing image datasets have shown that the proposed method outperforms existing technologies in evaluation metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), demonstrating superior denoising performance and broad application potential in complex noisy environments.展开更多
Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced...Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.展开更多
In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we ...In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we prove that solutions of regularization problem satisfy Lipschitz condition.展开更多
文摘高光谱图像混合噪声去除是遥感领域的一个基本问题,也是一个重要的预处理步骤。本研究针对高光谱图像去噪问题,为有效地对高光谱图像进行恢复,提出了一种基于重叠组稀疏性超拉普拉斯正则化(OGS-HL)的新型去噪方法。该方法可以有效捕捉图像的局部相关性和方向性结构,同时减少传统全变分正则化中的阶梯伪影。通过乘子交替方向法求解非凸优化问题,显著提高了去噪效率。在多个遥感图像数据集上的仿真实验表明,所提方法在峰值信噪比(PSNR)和结构相似度(SSIM)等评价指标上优于现有技术,展现了在复杂噪声环境下的优越去噪性能和广泛的应用潜力。The removal of mixed noise from hyperspectral images is a fundamental issue in the field of remote sensing and an important preprocessing step. This study focuses on the denoising problem of hyperspectral images. To effectively restore hyperspectral images, a new denoising method based on Overlap Group Sparse Hyper Laplacian Regularization (OGS-HL) is proposed. This method can effectively capture the local correlation and directional structure of images, while reducing the step artifacts in traditional total variation regularization. By using the alternating direction method of multipliers to solve non-convex optimization problems, the denoising efficiency has been significantly improved. Simulation experiments on multiple remote sensing image datasets have shown that the proposed method outperforms existing technologies in evaluation metrics such as peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), demonstrating superior denoising performance and broad application potential in complex noisy environments.
基金supported by the Natural Science Foundation of China (Nos. 11971230, 12071215)the Fundamental Research Funds for the Central Universities(No. NS2018047)the 2019 Graduate Innovation Base(Laboratory)Open Fund of Jiangsu Province(No. Kfjj20190804)
文摘Recently,inverse problems have attracted more and more attention in computational mathematics and become increasingly important in engineering applications.After the discretization,many of inverse problems are reduced to linear systems.Due to the typical ill-posedness of inverse problems,the reduced linear systems are often illposed,especially when their scales are large.This brings great computational difficulty.Particularly,a small perturbation in the right side of an ill-posed linear system may cause a dramatical change in the solution.Therefore,regularization methods should be adopted for stable solutions.In this paper,a new class of accelerated iterative regularization methods is applied to solve this kind of large-scale ill-posed linear systems.An iterative scheme becomes a regularization method only when the iteration is early terminated.And a Morozov’s discrepancy principle is applied for the stop criterion.Compared with the conventional Landweber iteration,the new methods have acceleration effect,and can be compared to the well-known acceleratedν-method and Nesterov method.From the numerical results,it is observed that using appropriate discretization schemes,the proposed methods even have better behavior when comparing withν-method and Nesterov method.
文摘In this paper,we will discuss smoothness of weak solutions for the system of second order differential equations eith non-negative characteristies.First of all,we establish boundary,and interior estimates and then we prove that solutions of regularization problem satisfy Lipschitz condition.