AIM: To investigate the structural and biochemical changes in the early stage of reperfusion in the rat livers exposed to lobar ischemia-reperfusion (IR). METHODS: The median and left lobes of the liver were subje...AIM: To investigate the structural and biochemical changes in the early stage of reperfusion in the rat livers exposed to lobar ischemia-reperfusion (IR). METHODS: The median and left lobes of the liver were subjected to 60 min ischemia followed by 5, 10, 30, 45, 60 and 120 min reperfusion. Blood samples were taken at different time intervals to test enzyme activities and biochemical alterations induced by reperfusion. At the end of each reperfusion period, the animals were killed by euthanasia and tissue samples were taken for histological examination and immunohistochemistry. RESULTS: Cell vacuolation, bleb formation and focal hepatitis were the most important changes occur during ischemia. While some changes including bleb formation were removed during reperfusion, other alterations including portal hepatitis, inflammation and the induction of apoptosis were seen during this stage. The occurrence of apoptosis, as demonstrated by apoptotic cells and bodies, was the most important histological change during reperfusion. The severity of apoptosis was dependent on the time of reperfusion, and by increasing the time of reperfusion, the numbers of apoptotic bodies was significantly enhanced. The amounts of lactate dehydrogenase, alanine aminotransferase, aspartate aminotransfrase, creatinine and urea were significantly increased in serum obtained from animals exposed to hepatic IR. CONCLUSION: Inflammation and subsequent apoptotic cell death were the most important changes in early-stage hepatic reperfusion injury, and the number of apoptotic bodies increased with time of reperfusion.展开更多
OBJECTIVE: To investigate the combinatorial effects of conception and governor vessel electroacupuncture(EA) and human umbilical cord blood-derived mesenchymal stem cells(HUCB-MSCs) on pathomorphologic lesion and cell...OBJECTIVE: To investigate the combinatorial effects of conception and governor vessel electroacupuncture(EA) and human umbilical cord blood-derived mesenchymal stem cells(HUCB-MSCs) on pathomorphologic lesion and cellular apoptosis in rats with cerebral ischemia/reperfusion. METHODS: With the HUCB-MSCs isolated, cultured and identified and the models of cerebral ischemia-reperfusion established, the HUCB-MSCs of passage three were intracranially transplanted and the EA at conception and governor vessels was applied. The pathomorphologic lesion by hematoxylin-eosin staining and the cellular apoptosis by terminal deoxynucleotidyl transferase-mediated nick-end labeling method around the ischemic focus were observed. RESULTS: The cultured adherent HUCB-MSCs exhibited a spindle shape and expressed MSC-specific markers, with the cell purity and proliferation rate significantly increasing after the primary passage. HE staining showed that there were no pathological changes observed in the sham surgery group. However, in the PBS transplantation group, degeneration and necrosis of a great number of nerve cells were seen. In both the HUCB-MSCs transplantation group and the HUCB-MSCs transplantation + EA group, reparative changes of the pathomorphism of the tissue were found. Both combination treatment and simple MSCs treatment were able to improve the pathomorphorlogic lesion following cerebral ischemia and reduce the abnormal TUNEL-positive numbers, with former better than latter. CONCLUSION: HUCB-MSCs improve pathological lesions and inhibit the cellular apoptosis around the cerebral ischemic area. EA at conception and governor vessels also improve pathological lesion and inhibit the cellular apoptosis in rats treated with HUCB-MSCs transplantation, which effects were superior to that of simple HUCB-MSCs transplantation.展开更多
基金Supported by University of Tehran,Vice chancellor forresearch and technology
文摘AIM: To investigate the structural and biochemical changes in the early stage of reperfusion in the rat livers exposed to lobar ischemia-reperfusion (IR). METHODS: The median and left lobes of the liver were subjected to 60 min ischemia followed by 5, 10, 30, 45, 60 and 120 min reperfusion. Blood samples were taken at different time intervals to test enzyme activities and biochemical alterations induced by reperfusion. At the end of each reperfusion period, the animals were killed by euthanasia and tissue samples were taken for histological examination and immunohistochemistry. RESULTS: Cell vacuolation, bleb formation and focal hepatitis were the most important changes occur during ischemia. While some changes including bleb formation were removed during reperfusion, other alterations including portal hepatitis, inflammation and the induction of apoptosis were seen during this stage. The occurrence of apoptosis, as demonstrated by apoptotic cells and bodies, was the most important histological change during reperfusion. The severity of apoptosis was dependent on the time of reperfusion, and by increasing the time of reperfusion, the numbers of apoptotic bodies was significantly enhanced. The amounts of lactate dehydrogenase, alanine aminotransferase, aspartate aminotransfrase, creatinine and urea were significantly increased in serum obtained from animals exposed to hepatic IR. CONCLUSION: Inflammation and subsequent apoptotic cell death were the most important changes in early-stage hepatic reperfusion injury, and the number of apoptotic bodies increased with time of reperfusion.
基金Supported by the National Natural Science Foundation of China(No.81072877)Shenzhen Municipal Science and Technology Research Development and Funds and Platform Construction Plan Key Laboratory Program(No.CXB201111250113A)Shenzhen Municipal Science and Technology Plan Project(No.201203149)
文摘OBJECTIVE: To investigate the combinatorial effects of conception and governor vessel electroacupuncture(EA) and human umbilical cord blood-derived mesenchymal stem cells(HUCB-MSCs) on pathomorphologic lesion and cellular apoptosis in rats with cerebral ischemia/reperfusion. METHODS: With the HUCB-MSCs isolated, cultured and identified and the models of cerebral ischemia-reperfusion established, the HUCB-MSCs of passage three were intracranially transplanted and the EA at conception and governor vessels was applied. The pathomorphologic lesion by hematoxylin-eosin staining and the cellular apoptosis by terminal deoxynucleotidyl transferase-mediated nick-end labeling method around the ischemic focus were observed. RESULTS: The cultured adherent HUCB-MSCs exhibited a spindle shape and expressed MSC-specific markers, with the cell purity and proliferation rate significantly increasing after the primary passage. HE staining showed that there were no pathological changes observed in the sham surgery group. However, in the PBS transplantation group, degeneration and necrosis of a great number of nerve cells were seen. In both the HUCB-MSCs transplantation group and the HUCB-MSCs transplantation + EA group, reparative changes of the pathomorphism of the tissue were found. Both combination treatment and simple MSCs treatment were able to improve the pathomorphorlogic lesion following cerebral ischemia and reduce the abnormal TUNEL-positive numbers, with former better than latter. CONCLUSION: HUCB-MSCs improve pathological lesions and inhibit the cellular apoptosis around the cerebral ischemic area. EA at conception and governor vessels also improve pathological lesion and inhibit the cellular apoptosis in rats treated with HUCB-MSCs transplantation, which effects were superior to that of simple HUCB-MSCs transplantation.