The moment analysis is applied to perform large scale simulations of the rice-pile model. We find that this model shows different scaling behavior depending on the driving mechanism used. With the noisy driving, the r...The moment analysis is applied to perform large scale simulations of the rice-pile model. We find that this model shows different scaling behavior depending on the driving mechanism used. With the noisy driving, the rice-pile model violates the finite-size scaling hypothesis, whereas, with fixed driving, it shows well defined avalanche exponents and displays good finite size scaling behavior for the avalanche size and time duration distributions.展开更多
A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays ...A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.展开更多
A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalan...A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalanche dynamical behavior is sensitive to the topological structure of networks. Furthermore, the exponent ~ of the model depends on b, which weights the distance in comparison with the degree in the GBA network evolution.展开更多
Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose cl...Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil on slope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sediment run-off system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be pre-dicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magni-tude, frequency and time interval of debris flows.展开更多
文摘The moment analysis is applied to perform large scale simulations of the rice-pile model. We find that this model shows different scaling behavior depending on the driving mechanism used. With the noisy driving, the rice-pile model violates the finite-size scaling hypothesis, whereas, with fixed driving, it shows well defined avalanche exponents and displays good finite size scaling behavior for the avalanche size and time duration distributions.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China.
文摘A simple model for a set of interacting idealized neurons in scale-free networks is introduced. The basic elements of the model are endowed with the main features of a neuron function. We find that our model displays powerlaw behavior of avalanche sizes and generates long-range temporal correlation. More importantly, we find different dynamical behavior for nodes with different connectivity in the scale-free networks.
基金The project supported by National Natural Science Foundation of China under Grant No. 90203008 and the Doctoral Foundation of the Ministry of Education of China
文摘A modified Olami-Feder-Christenaen model of self-organized criticality on generalized Barabási-Albert (GBA) scale-flee networks is investigated. We find that our mode/ displays power-law behavior and the avalanche dynamical behavior is sensitive to the topological structure of networks. Furthermore, the exponent ~ of the model depends on b, which weights the distance in comparison with the degree in the GBA network evolution.
基金supported by the Basic Research Funds for Mountain Hazards-Special Support Domain of the Chinese Academy of Sciences(Grant No.99303)Assistance Project of the National Natural Science Foundation of China(Grant No.40071010).
文摘Based on the viewpoint of stress and strain self-organization criticality of debris flow mass, this paper probes into inter-nonlinear action between different factors in the thixotropic liquefaction system of loose clastic soil on slope to make clastic soil in slope develop naturally towards critical stress status, and slope debris flow finally occurs under trigging by rainstorm. Also according to observation and analysis of self-organization criticality of sediment run-off system of viscous debris flow surges in ravines and power relation between magnitude and frequency of debris flows, this paper expounds similarity of the self-organized structure of debris flow mass. The self-organized critical system is a weak chaotic system. Debris flow occurrences can be pre-dicted accordingly by means of observation at certain time scale and analysis of self-organization criticality of magni-tude, frequency and time interval of debris flows.