Cestode larvae spend one phase of their two-phase life cycle in the viscera of rodents, but cases of cestodes infecting subterranean rodents have only been rarely observed. To experimentally gain some insight into thi...Cestode larvae spend one phase of their two-phase life cycle in the viscera of rodents, but cases of cestodes infecting subterranean rodents have only been rarely observed. To experimentally gain some insight into this phenomenon, we captured approximately 300 plateau zokors(Eospalax baileyi), a typical subterranean rodent inhabiting the Qinghai-Tibet Plateau, and examined their livers for the presence of cysts. Totally, we collected five cysts, and using a mitochondrial gene(cox1) and two nuclear genes(pepck and pold) as genetic markers, we were able to analyze the taxonomy of the cysts. Both the maximum likelihood and Bayesian methods showed that the cysts share a monophyly with Taenia mustelae, while Kimura 2-parameter distances and number of different sites between our sequences and T. mustelae were far less than those found between the examined sequences and other Taeniidae species. These results, alongside supporting paraffin section histology, imply that the cysts found in plateau zokors can be regarded as larvae of T. mustelae, illustrating that zokors are a newly discovered intermediate host record of this parasite.展开更多
Objective: To investigate the roles of chloramphenicol (CAP) preconditioning in the oxidative respiratory function of cerebral mitochondria in rats exposed to acute hypoxia during acute hypoxia by observing the change...Objective: To investigate the roles of chloramphenicol (CAP) preconditioning in the oxidative respiratory function of cerebral mitochondria in rats exposed to acute hypoxia during acute hypoxia by observing the changes of mitochondrial oxidative respiratory function and cytochrome C oxidase (COX) activity. Methods: Adult male Wistar rats were randomly divided into 4 groups: control (C), medication (M), hypoxia (H), and medication plus hypoxia (MH). Rats in groups M and MH were administered by peritoneal injection of CAP (50 mg/kg) every 12 h for 7 d before decapitation, but those in groups H and MH were exposed to a hypobaric chamber simulating 5 000 m high altitude for 24 h. The rat cerebral cortex was removed and mitochondria were isolated by centrifugation. Mitochondrial respiratory function and COX activity were measured by Clark oxygen electrode. Results: Compared with Group C, Group H showed significantly elevated state 4 respiration (ST 4), decreased state 3 respiration (ST 3), and respiratory control rate (RCR) in mitochondrial respiration during acute hypoxic exposure. ST 3 in Group MH was significantly lower than that in Group C, but was not significantly different from that in Groups H and M, while ST 4 in Group MH was significantly lower than that in groups C and H. RCR in Group MH was higher than that in Group H, but lower than that in Group C. COX activity in Group H was significantly lower than that in Group C. In Group MH, COX activity increased and was higher than that in Group H, but was still lower than that in Group C. Conclusion: Acute hypoxic exposure could lead to mitochondrial respiratory dysfunction, suggesting that CAP preconditioning might be beneficial to the recovery of rat respiratory function. The change of COX activity is consistent with that of mitochondrial respiratory function during acute hypoxic exposure and CAP-administration, indicating that COX plays an important role in oxidative phosphorylation function of mitochondria from cerebral cortex of hypoxic rats.展开更多
基金supported by the West Light Foundation of the Chinese Academy of Sciences and the Chinese Academy of Sciences President Scholarship(to G.Lin)
文摘Cestode larvae spend one phase of their two-phase life cycle in the viscera of rodents, but cases of cestodes infecting subterranean rodents have only been rarely observed. To experimentally gain some insight into this phenomenon, we captured approximately 300 plateau zokors(Eospalax baileyi), a typical subterranean rodent inhabiting the Qinghai-Tibet Plateau, and examined their livers for the presence of cysts. Totally, we collected five cysts, and using a mitochondrial gene(cox1) and two nuclear genes(pepck and pold) as genetic markers, we were able to analyze the taxonomy of the cysts. Both the maximum likelihood and Bayesian methods showed that the cysts share a monophyly with Taenia mustelae, while Kimura 2-parameter distances and number of different sites between our sequences and T. mustelae were far less than those found between the examined sequences and other Taeniidae species. These results, alongside supporting paraffin section histology, imply that the cysts found in plateau zokors can be regarded as larvae of T. mustelae, illustrating that zokors are a newly discovered intermediate host record of this parasite.
文摘Objective: To investigate the roles of chloramphenicol (CAP) preconditioning in the oxidative respiratory function of cerebral mitochondria in rats exposed to acute hypoxia during acute hypoxia by observing the changes of mitochondrial oxidative respiratory function and cytochrome C oxidase (COX) activity. Methods: Adult male Wistar rats were randomly divided into 4 groups: control (C), medication (M), hypoxia (H), and medication plus hypoxia (MH). Rats in groups M and MH were administered by peritoneal injection of CAP (50 mg/kg) every 12 h for 7 d before decapitation, but those in groups H and MH were exposed to a hypobaric chamber simulating 5 000 m high altitude for 24 h. The rat cerebral cortex was removed and mitochondria were isolated by centrifugation. Mitochondrial respiratory function and COX activity were measured by Clark oxygen electrode. Results: Compared with Group C, Group H showed significantly elevated state 4 respiration (ST 4), decreased state 3 respiration (ST 3), and respiratory control rate (RCR) in mitochondrial respiration during acute hypoxic exposure. ST 3 in Group MH was significantly lower than that in Group C, but was not significantly different from that in Groups H and M, while ST 4 in Group MH was significantly lower than that in groups C and H. RCR in Group MH was higher than that in Group H, but lower than that in Group C. COX activity in Group H was significantly lower than that in Group C. In Group MH, COX activity increased and was higher than that in Group H, but was still lower than that in Group C. Conclusion: Acute hypoxic exposure could lead to mitochondrial respiratory dysfunction, suggesting that CAP preconditioning might be beneficial to the recovery of rat respiratory function. The change of COX activity is consistent with that of mitochondrial respiratory function during acute hypoxic exposure and CAP-administration, indicating that COX plays an important role in oxidative phosphorylation function of mitochondria from cerebral cortex of hypoxic rats.