Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for ima...Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for image's local structure, which is favorable for this problem. Based on this, we propose a background subtraction method via low-rank and SILTP-based structured sparse decomposition, named LRSSD. In this method, a novel SILTP-inducing sparsity norm is introduced to enhance the structured presentation of the foreground region. As an assistance, saliency detection is employed to render a rough shape and location of foreground. The final refined foreground is decided jointly by sparse component and attention map. Experimental results on different datasets show its superiority over the competing methods, especially under noise and changing illumination scenarios.展开更多
基金supported in part by the EU FP7 QUICK project under Grant Agreement No.PIRSES-GA-2013-612652*National Nature Science Foundation of China(No.61671336,61502348,61231015,61671332,U1736206)+3 种基金Hubei Province Technological Innovation Major Project(No.2016AAA015,No.2017AAA123)the Fundamental Research Funds for the Central Universities(413000048)National High Technology Research and Development Program of China(863 Program)No.2015AA016306Applied Basic Research Program of Wuhan City(2016010101010025)
文摘Background subtraction is a challenging problem in surveillance scenes. Although the low-rank and sparse decomposition(LRSD) methods offer an appropriate framework for background modeling, they fail to account for image's local structure, which is favorable for this problem. Based on this, we propose a background subtraction method via low-rank and SILTP-based structured sparse decomposition, named LRSSD. In this method, a novel SILTP-inducing sparsity norm is introduced to enhance the structured presentation of the foreground region. As an assistance, saliency detection is employed to render a rough shape and location of foreground. The final refined foreground is decided jointly by sparse component and attention map. Experimental results on different datasets show its superiority over the competing methods, especially under noise and changing illumination scenarios.