The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning tra...The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).The crystals were grown by the floating zone (FZ) method.Both cuboidal and spherical γ' precipitates were formed after a two-step aging.The size of the cuboidal γ' phases first increased and then decreased with the extension of the second-step aging time.Re,Co and Cr strongly concentrated in the γ phase whereas Ni and Al enriched in the γ' phase.Thermodynamic calculation by JMatPro was performed to explain the experimental observations.展开更多
Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided p...Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.展开更多
The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloy...The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last.展开更多
In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on comp...In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data.展开更多
基金Project(08dj1400402) supported by the Major Program for the Fundamental Research of Science and Technology Committee of the Shanghai Municipality,ChinaProject(09ZZ16) supported by Innovation Program of Shanghai Municipal Education Committee,China
文摘The γ/γ' microstructure of a Re-containing Ni-based single crystal super alloy after a two-step aging was studied using scanning electron microscopy (SEM),transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM).The crystals were grown by the floating zone (FZ) method.Both cuboidal and spherical γ' precipitates were formed after a two-step aging.The size of the cuboidal γ' phases first increased and then decreased with the extension of the second-step aging time.Re,Co and Cr strongly concentrated in the γ phase whereas Ni and Al enriched in the γ' phase.Thermodynamic calculation by JMatPro was performed to explain the experimental observations.
基金Project(2011DFB70230)supported by State International Cooperation Program of ChinaProject(N110403003)supported by Basic Research Foundation of Education Ministry of China
文摘Artificial bone with porous structure is crucial for tissue scaffold and clinic implants.Scaffold provides structure support for cells and guides tissues regeneration for final tissue structure.A computational aided process of porous bone modeling was developed which described the design and fabrication of tissue scaffolds by considering intricate architecture,porosity and pore size.To simulate intricate bone structure,different constructive units were presented.In modeling process,bone contour was gotten from computed tomography(CT)images and was divided into two levels.Each level was represented by relatively reconstructive process.Pore size distribution was controlled by using mesh generation.The whole hexahedral mesh was reduced by unit structure,when a 3D mesh with various hexahedral elements was provided.The simulation results show that constructive structure of porous scaffold can meet the needs of clinic implants in accurate and controlled way.
基金Project(JPPT-115-2-948) supported by the National Civilian Matched Project of China
文摘The microstructure evolutions of two A1-Zn-Mg alloys, one of which was alloyed with Sc and Zr, and the kinetics of A13(SCl-xZrx) precipitates in the A1-Zn-Mg alloy during homogenization were investigated. Both alloys under as-cast condition with supersaturated, non-equilibrium T(Mg32(A1, Zn)49) phase and impurities phase were displayed. When the homogenization temperatures are below 350 ~C, Zn and Mg atoms precipitate from matrix; however, when the temperatures are above 400 ~C, T phase dissolves into matrix, enhancing solid-solution strengthening. Kinetics of A13(Scl.xZrx) precipitates was studied based on Jmat Pro software calculation and the difference values between the hardness of the two alloys in each homogenization condition. The calculations predict that the Sc and Zr solubilities in ct-A1 decline with the presence of Mg and Zn. Investigation of the difference values reveals that when the temperature is between 300 ~C and 350 ~C, the nucleation rate of A13(Sc1-xZrx) precipitates is the highest and the strengthening effect from A13(SCl_xZrx) precipitates is the best. After homogenization at 470℃ for 12 h, non-equilibrium T phase disappears, while impurity phase remains. The mean diameter of A13(Scl_xZrx) precipitates is around 18 urn. Ideas about better fulfilling the potentials of Sc and Zr were proposed at last.
文摘In this paper, the authors present three different algorithms for data clustering. These are Self-Organizing Map (SOM), Neural Gas (NG) and Fuzzy C-Means (FCM) algorithms. SOM and NG algorithms are based on competitive leaming. An important property of these algorithms is that they preserve the topological structure of data. This means that data that is close in input distribution is mapped to nearby locations in the network. The FCM algorithm is an algorithm based on soft clustering which means that the different clusters are not necessarily distinct, but may overlap. This clustering method may be very useful in many biological problems, for instance in genetics, where a gene may belong to different clusters. The different algorithms are compared in terms of their visualization of the clustering of proteomic data.