The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analy...The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analysis, quantitative elemental analysis and microstructure. The results show that Sc_2O_3 is found to be beneficial for the densification of MAS. Sc_2O_3 has a more significant effect on the densification of partially spinelized MAS batch than that of fully spinelized MAS batch. At the sintering temperature of 1650 °C, the bulk density of sintered products of partially spinelized powders increases by 0.243 g/cm3 as the Sc_2O_3 content increases from 0 to 4%(mass fraction) and that of fully spinelized powder increases by 0.14 g/cm3. Compared with the sintered samples prepared from the fully spinelized powder, the sintered samples using the partially spinelized powders as raw materials have more compact microstructures.展开更多
Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution i...Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution in sintering were investigated at different heating rates. The results show that the SPS densification process can be divided into three stages. At the initial unshrinking stage, fast heating generates instantaneous discharge and locally inhomogeneous temperature distribution in solid-state powder particles, enhancing later densification; during the intermediate solid state sintering stage, diffusion is more sufficient in the slow-heated SPS process; at the final transient liquid-phase sintering stage, tungsten grains become sphered and coarsen rapidly, but fast heating helps maintain rather small grain sizes.展开更多
基金Project(51374240) supported by the National Natural Science Foundation of ChinaProject(2012BAE08B02) supported by the National Science and Technology Pillar Program of China
文摘The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analysis, quantitative elemental analysis and microstructure. The results show that Sc_2O_3 is found to be beneficial for the densification of MAS. Sc_2O_3 has a more significant effect on the densification of partially spinelized MAS batch than that of fully spinelized MAS batch. At the sintering temperature of 1650 °C, the bulk density of sintered products of partially spinelized powders increases by 0.243 g/cm3 as the Sc_2O_3 content increases from 0 to 4%(mass fraction) and that of fully spinelized powder increases by 0.14 g/cm3. Compared with the sintered samples prepared from the fully spinelized powder, the sintered samples using the partially spinelized powders as raw materials have more compact microstructures.
基金Project (2010CB635104) supported by the National Basic Research Program of ChinaProject (2007AA03Z112) supported by the National High-Tech Research and Development Program of China+2 种基金Project (9140A18040709JW1601) supported by the Advanced Research Fund of DOD, ChinaProject (2009ZZ0019) supported by the Fundamental Research Funds for the Central Universities, ChinaProject (NCET-10-0364) supported by the Program for New Century Excellent Talents in University, China
文摘Spark plasma sintering method (SPS) was used to consolidate mixed W-5.6Ni-1.4Fe (mass fraction, %) powders from commercial fine elemental powders, and both the densification behavior and microstructure evolution in sintering were investigated at different heating rates. The results show that the SPS densification process can be divided into three stages. At the initial unshrinking stage, fast heating generates instantaneous discharge and locally inhomogeneous temperature distribution in solid-state powder particles, enhancing later densification; during the intermediate solid state sintering stage, diffusion is more sufficient in the slow-heated SPS process; at the final transient liquid-phase sintering stage, tungsten grains become sphered and coarsen rapidly, but fast heating helps maintain rather small grain sizes.