The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscop...The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and scanning transmission electron microscopy. The results show that with the decrease of quenching rate from 960 ℃/s to 2 ℃/s, the hardness after aging is decreased by about 33% for the homogenized and solution heat treated alloy(H-alloy) with large equiaxed grains and about 43% for the extruded and solution heat treated alloy(E-alloy) with elongated grains and subgrains. Cr-containing dispersoids make contribution to about 33% decrement in hardness of the H-alloy due to slow quenching; while in the E-alloy, the amount of(sub) grain boundaries is increased by about one order of magnitude, which leads to a further 10% decrement in hardness due to slow quenching and therefore higher quench sensitivity.展开更多
The effects of Y on the microstructure and mechanical properties of Mg-6Zn-lMn alloy were investigated. The results show that the addition of Y has significant effect on the phase composition, microstructure and mecha...The effects of Y on the microstructure and mechanical properties of Mg-6Zn-lMn alloy were investigated. The results show that the addition of Y has significant effect on the phase composition, microstructure and mechanical properties of Mg-6Zn-lMn alloy. Varied phases compositions, including Mg7Zn3, I-phase (Mg3YZn6), W-phase (Mg3Y2Zn3) and X-phase (MgI2YZn), are obtained by adjusting the Zn to Y mass ratio. Mn element exists as the fine Mn particles, which are well distributed in the alloy. Thermal analysis and microstructure observation reveal that the phase stability follows the trend of X〉W〉/〉MgTZn3. In addition, Y can improve the mechanical properties of Mg-Zn-Mn alloy significantly, and the alloy with Y content of 6.09% has the best mechanical properties. The high strength is mainly due to the strengthening by the grain size refinement, dispersion strengthening by fine Mn particles, and introduction of the Mg-Zn-Y ternary phases.展开更多
Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of...Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of about 1.3 μm. The microstructure is characterized by nearly uniform ultrafine equiaxed microstructure without twins. The evolution of the misorientation distribution during ARB was measured by EBSD. Grain refinement can be contributed to the grain subdivision induced by severe accumulated strain, the accumulated strain enhanced concurrent dynamic recovery and recrystallization as well as the complicated distribution of interface and shear strain during ARB.展开更多
The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results...The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.展开更多
The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indic...The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indicate that the microstructure of the alloys ZA82, ZA102 and ZA122 with the mass ratio of Zn to A1 of 4-6 is mainly composed of a-Mg matrix and two different morphologies of precipitates (block τ-Mg32(Al, Zn)49 and dense lamellar ε-Mg51Zn20), the alloys ZA84, ZA104 and ZA124 with the mass ratio of 2-3 contain α-Mg matrix and only block r phases, and the alloys ZA86, ZA106 and ZA126 with the mass ratio of 1-2 consist of a-Mg matrix, block r precipitates, lamellar Ф-Al2Mg5Zn2 eutectics and flocculent β-Mg17Al12 compounds. The alloys studied with the mass ratio of Zn to A1 of 2-3 exhibit high creep resistance, and the alloy ZA124 with the continuous network of r precipitating along grain boundaries shows the highest creep resistance.展开更多
The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transfor...The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.展开更多
Compressive anisotropy of extruded Mg-2Dy-0.5Zn (mole fraction, %) alloy sheet was investigated. The alloy sheet was mainly composed ofα-Mg, (Mg, Zn)xDy phase and a large number of long period stacking ordered (...Compressive anisotropy of extruded Mg-2Dy-0.5Zn (mole fraction, %) alloy sheet was investigated. The alloy sheet was mainly composed ofα-Mg, (Mg, Zn)xDy phase and a large number of long period stacking ordered (LPSO) phases distributed along the extrusion direction. The compressive experimental results show that the alloy sheet exhibits an obvious compressive anisotropy. The compressive strength of the specimen in the extrusion direction (ED) is higher than those of the specimens in the transverse direction (TD) and 45° inclined to the extrusion direction. The compressive yield strength (CYS), ultimate compressive strength (UCS) and compressive strain of the specimen in the ED are 274.65 MPa, 518.94 MPa and 12.93%, respectively. The compressive anisotropy is mainly attributed to the distribution of LPSO phase and formation of〈10 10〉//ED fiber texture in the deformed grains.展开更多
The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measuremen...The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate.展开更多
The microstructure and mechanical properties of the cast and extruded Mg-12Zn-1.5Er alloys were investigated. The I-phase observed in the cast Mg-12Zn-1.5Er alloy was broken during hot extrusion. The microstructure of...The microstructure and mechanical properties of the cast and extruded Mg-12Zn-1.5Er alloys were investigated. The I-phase observed in the cast Mg-12Zn-1.5Er alloy was broken during hot extrusion. The microstructure of the alloy was refined due to the dynamic recrystallization, and the equiaxed grains have size in the range of 2 5 μm. Moreover, a great deal of nano-scale particles precipitate in the recrystallized grains. Compared with the cast one, the extruded alloy shows a great improvement on the mechanical properties as the result of refined microstructure, the dispersed I-phase and the fine precipitates. The ultimate tensile strength and the yield tensile strength of this extruded alloy are 359 and 318 MPa, respectively.展开更多
The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction ...The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction is Ni3Si/(T+γ)/γ/…T/γ/Ni4Zn12Si3/γ/…Ni4Zn12Si3/γ/Ni4Zn12Si3/δ…/Ni4Zn12Si3/δ/liquid-Zn, and the diffusion path in solid-vapor reaction is Ni3Si/θ/(T+γ)/γ/…/T/γ/…T/γ/vapor-Zn. With increasing Zn diffusion flux, the diffusion reaction path moves toward the Zn-rich direction, and the distance from the Ni3Si substrate to the periodic layer pair nearest to the interface decreases. In the initial stage of both reactions,γphase nucleates and grows within T matrix phase at first, and then conjuncts together to form a band to reduce the surface energy. Based on the experimental results and diffusion kinetics analysis, the microstructure differences were compared and the formation mechanism of the periodic layered structure in Ni3Si/Zn system was discussed.展开更多
The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly com...The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly composed ofα-Mg, Mg2Ca, Ca2Mg6Zn3,I (Mg3YZn6) andW (Mg3Y2Zn3) phases. However, with Y content increasing from 0.86% to 2.68%, the amount of the Ca2Mg6Zn3 phase gradually decreases but that of theI (Mg3YZn6) andW (Mg3Y2Zn3) phases gradually increases. Furthermore, an increase in Y content from 0.86% to 2.68% also causes the grain size of the as-cast alloys to gradually decrease. In addition, the tensile and creep properties of the as-cast alloys vary with Y content. Namely, with Y content increasing from 0.86% to 2.68%, the creep properties gradually increase, whereas the tensile properties firstly increase and attain the maximum at 1.77% Y, beyond that they decrease. Amongst the as-cast alloys with 0.86% Y, 1.19% Y, 1.77% Y and 2.68% Y, the alloy with 1.77% Y exhibits the relatively optimal tensile and creep properties.展开更多
The effects of Al/Zn ratio(mass ratio) on microstructure and mechanical properties of the Mg-8 Li alloy were investigated. The results indicate that in the as-cast Mg-8Li-xAl-yZn(x+y=5) alloys(LAZ alloys), when the Al...The effects of Al/Zn ratio(mass ratio) on microstructure and mechanical properties of the Mg-8 Li alloy were investigated. The results indicate that in the as-cast Mg-8Li-xAl-yZn(x+y=5) alloys(LAZ alloys), when the Al/Zn ratio is 1:4 and 2:3, the secondary phases are mainly AlLi and MgLiZn phases;when the Al/Zn ratio is 3:2 and 4:1, the secondary phases are mainly AlLi and MgLi2Al phases. The decomposition temperature of MgLiZn phase is about 300 ℃ and the decomposition temperatures of AlLi phase and MgLi2 Al phase are higher(~350 ℃). Solid solution strengthening is the main factor for the improvement of strength of Mg-8Li-xAl-yZn alloys. The Mg-8 Li-3 Al-2 Zn alloy after solution treatment at 350 ℃ for 4 h has the best comprehensive mechanical properties(yield strength of 272.5 MPa, ultimate tensile strength of 315.0 MPa and elongation of 3.4%) among the studied as-cast and solid solution treated Mg-8Li-xAl-yZn alloys.展开更多
Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase...Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase, icosahedral quasicrystal phased-phase) has great influence on Mg-Zn-Y-(Zr) alloys. The yield strength of Mg-Zn-Y-(Zr) alloys could reach 150 - 450 MPa at room temperature with different I-phase volume fractions, therefore the formation of I-phase has been regared as an effective method to improve the performance of Mg alloys. In this review paper, a series of researches about the Mg-Zn-Y-(Zr) alloys containing I-phase have been discussed, mainly including the current understandings about formation mechanism and I- phase structure, its orientation relationship with a-Mg matrix, and the effect of I-phase on Mg-Zn-Y-(Zr) alloys.展开更多
The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size ...The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn_(2)precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion(IGC) and exfoliation corrosion(EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.展开更多
The influence of Mn content on the microstructure,tensile properties and strain-hardening behaviors of extruded Mg−1Gd−0.5Zn−xMn(x=0,0.3 and 1,wt.%)alloy sheets was investigated by X-ray diffraction(XRD),scanning elec...The influence of Mn content on the microstructure,tensile properties and strain-hardening behaviors of extruded Mg−1Gd−0.5Zn−xMn(x=0,0.3 and 1,wt.%)alloy sheets was investigated by X-ray diffraction(XRD),scanning electron microscope(SEM),and electron backscatter diffraction(EBSD).The results show that the completely recrystallized grain structure and the extrusion direction(ED)-titling texture are observed in all the extruded sheets.The mean grain size and weakened ED-titling texture of the extruded sheets are gradually reduced with increasing Mn content.This is primarily associated with the formation of new fineα-Mn particles by Mn addition.Tensile properties show that the addition of Mn also leads to the improvement of yield strengths,ultimate tensile strengths and elongations of the extruded Mg−1Gd−0.5Zn−xMn sheets,which is mainly due to the fine grains andα-Mn particles.In addition,the Mg−1Gd−0.5Zn−1Mn sheet has the lowest strain-hardening exponent and the best hardening capacity among all prepared Mg−1Gd−0.5Zn−xMn sheets.展开更多
The as-cast Mg-8 Li-xZn-yGd(x=1 2, 3,4;y=1,2;wt.%)alloys were prepared in a vacuum induction furnace and their microstructure and mechanical properties were investigated. The results show that the increase of Zn conte...The as-cast Mg-8 Li-xZn-yGd(x=1 2, 3,4;y=1,2;wt.%)alloys were prepared in a vacuum induction furnace and their microstructure and mechanical properties were investigated. The results show that the increase of Zn content results in the volume fraction of W-phase(Mg3 Zn3 Gd2) increasing while that of Mg3 Gd phase decreasing. The strength of Mg-8 Li-xZn-1 Gd alloys is improved with the increase of Zn content,which is ascribed to the second phase strengthening of fine strip-like W-phase and the solid solution strengthening of Zn element.For Mg-8 Li-4 Zn-yGd alloys,the increase of Gd content leads to the appearance of coarse and discontinuous net-like W-phase, which decreases the strength. The Mg-8 Li-4 Zn-1 Gd alloy exhibits an optimum comprehensive performance with the yield strength, ultimate tensile strength and elongation of 154.7 MPa, 197.0 MPa and 12.4%, respectively. In addition,the aging behavior of the typical alloys was also investigated.展开更多
The microstructure and properties of the as-cast,as-homogenized and as-extruded Mg−6Zn−4Sn−1Mn(ZTM641)alloy with various Al contents(0,0.5,1,2,3 and 4 wt.%)were investigated by OM,XRD,DSC,SEM,TEM and uniaxial tensile ...The microstructure and properties of the as-cast,as-homogenized and as-extruded Mg−6Zn−4Sn−1Mn(ZTM641)alloy with various Al contents(0,0.5,1,2,3 and 4 wt.%)were investigated by OM,XRD,DSC,SEM,TEM and uniaxial tensile tests.The results show that when the Al content is not higher than 0.5%,the alloys are mainly composed of α-Mg,Mg_(2)Sn,Al_(8)Mn_(5)and Mg_(7)Zn_(3)phases.When the Al content is higher than 0.5%,the alloys mainly consist ofα-Mg,Mg_(2)Sn,MgZn,Mg_(32)(Al,Zn)_(49),Al_(2)Mg_(5)Zn_(2),Al_(11)Mn_(4)and Al_(8)Mn_(5)phases.A small amount of Al(≤1%)can increase the proportion of fine dynamic recrystallized(DRXed)grains during hot-extrusion process.The roomtemperature tensile test results show that the ZTM641−1Al alloy has the best comprehensive mechanical properties,in which the ultimate tensile strength is 332 MPa,yield strength is 221 MPa and the elongation is 15%.Elevatedtemperature tensile test results at 150 and 200℃ show that ZTM641−2Al alloy has the best comprehensive mechanical properties.展开更多
To investigate the effect of grain refinement on the material properties of recently developed Al-25 Zn-3 Cu based alloys,Al-25 Zn-3 Cu,Al-25 Zn-3 Cu-0.01 Ti,Al-25 Zn-3 Cu-3 Si and Al-25 Zn-3 Cu-3 Si-0.01 Ti alloys we...To investigate the effect of grain refinement on the material properties of recently developed Al-25 Zn-3 Cu based alloys,Al-25 Zn-3 Cu,Al-25 Zn-3 Cu-0.01 Ti,Al-25 Zn-3 Cu-3 Si and Al-25 Zn-3 Cu-3 Si-0.01 Ti alloys were produced by permanent mold casting method.Microstructures of the alloys were examined by SEM.Hardness and mechanical properties of the alloys were determined by Brinell method and tensile tests,respectively.Tribological characteristics of the alloys were investigated by a ball-on-disc type test machine.Corrosion properties of the alloys were examined by an electrochemical corrosion experimental setup.It was observed that microstructure of the ternary A1-25 Zn-3 Cu alloy consisted ofα,α+ηandθ(Al2Cu)phases.It was also observed that the addition of 3 wt.%Si to A1-25Zn-3Cu alloy resulted in the formation of silicon particles in its microstructure.The addition of 0.01 wt.%Ti to the Al-25Zn-3Cu and Al-25 Zn-3 Cu-3 Si alloys caused a decrement in grain size by approximately 20%and 39%and an increment in hardness from HRB 130 to 137 and from HRB 141 to 156,respectively.Yield strengths of these alloys increased from 278 to 297 MPa and from 320 to 336 MPa while their tensile strengths increased from 317 to 340 MPa and from 334 to 352 MPa.Wear resistance of the alloys increased,but corrosion resistance decreased with titanium addition.展开更多
The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has ...The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has also been reported to provide a fine-grained microstructure. In the present study, Al-Zn alloy ingots of 20 mm in thickness were homogenized and hot-rolled to a thickness of 2 mm under three processes: 1) the specimen was air-cooled after homogenization and hot-rolled; 2) the specimen was water-quenched after homogenization and hot-rolled; 3) the specimen was immediately hot-rolled after homogenization. Microstructural observation showed that, in processes l and 3, lamellar microstructure was formed after homogenization, and became fragmented to fine-grained microstructure as the hot roiling process proceeded. In process 2, fine-grained microstructure without lamellar microstructure was attained throughout the hot-rolling process. A minimum grain size of 1.6 μm was obtained in process 3. Tensile tests at room temperature showed that the elongation to failure was the largest in process 3.展开更多
基金Project(2012CB619500)supported by the National Basic Research Program of ChinaProject supported by Shenghua Yuying Project of Central South University,China
文摘The effect of grain structure on quench sensitivity of an Al-Zn-Mg-Cu-Cr alloy was investigated by hardness testing, optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and scanning transmission electron microscopy. The results show that with the decrease of quenching rate from 960 ℃/s to 2 ℃/s, the hardness after aging is decreased by about 33% for the homogenized and solution heat treated alloy(H-alloy) with large equiaxed grains and about 43% for the extruded and solution heat treated alloy(E-alloy) with elongated grains and subgrains. Cr-containing dispersoids make contribution to about 33% decrement in hardness of the H-alloy due to slow quenching; while in the E-alloy, the amount of(sub) grain boundaries is increased by about one order of magnitude, which leads to a further 10% decrement in hardness due to slow quenching and therefore higher quench sensitivity.
基金Project(2007CB613700)supported by the National Basic Research Program of ChinaProject(2011BAE22B01-3)supported by the National Key Technologies R&D Program of China+1 种基金Project(2010DFR50010,2008DFR50040)supported by the International Scientific and Technological Cooperation Program of Ministry of Science and Technology of ChinaProject(CSTC,2010AA4048)supported by Chongqing Science and Technology Commission,China
文摘The effects of Y on the microstructure and mechanical properties of Mg-6Zn-lMn alloy were investigated. The results show that the addition of Y has significant effect on the phase composition, microstructure and mechanical properties of Mg-6Zn-lMn alloy. Varied phases compositions, including Mg7Zn3, I-phase (Mg3YZn6), W-phase (Mg3Y2Zn3) and X-phase (MgI2YZn), are obtained by adjusting the Zn to Y mass ratio. Mn element exists as the fine Mn particles, which are well distributed in the alloy. Thermal analysis and microstructure observation reveal that the phase stability follows the trend of X〉W〉/〉MgTZn3. In addition, Y can improve the mechanical properties of Mg-Zn-Mn alloy significantly, and the alloy with Y content of 6.09% has the best mechanical properties. The high strength is mainly due to the strengthening by the grain size refinement, dispersion strengthening by fine Mn particles, and introduction of the Mg-Zn-Y ternary phases.
基金Project (50801027) supported by the National Natural Science Foundation of ChinaProject(2007001) supported by the Public Foundation of Guangdong Key Laboratory for Advanced Metallic Materials Processing,South China University of Technology,China
文摘Accumulative roll-bonding (ARB) was applied to Mg-Al-Zn magnesium alloy sheets to prepare ultrafine-grain microstructure. Significant grain refinement is achieved after three cycles of ARB with average grain size of about 1.3 μm. The microstructure is characterized by nearly uniform ultrafine equiaxed microstructure without twins. The evolution of the misorientation distribution during ARB was measured by EBSD. Grain refinement can be contributed to the grain subdivision induced by severe accumulated strain, the accumulated strain enhanced concurrent dynamic recovery and recrystallization as well as the complicated distribution of interface and shear strain during ARB.
基金Project(50975053) supported by the National Natural Science Foundation of China
文摘The microstructure evolution of Al-Zn-Mg-Cu alloy was studied by differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) during different rate cooling processes. Based on the DSC results, the kinetics analysis was carried out. The results indicate that the precipitation of η phase is the predominant transformation for the alloy during the cooling process after the solution treatment. And the η phase nucleates on dispersoids and at grain boundaries. The amount of η phase decreases with increasing cooling rate, and reduces by 75% as the cooling rate increases from 5 to 50 ℃/min. The kinetics of the precipitation of η phase can be described by the Kamamoto transformation model when the cooling rate is a constant.
基金Project(10KJB430012) supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of ChinaProject (BK2011063) supported by the Nantong Science and Technology Commission of China
文摘The microstructural characteristics, mechanical properties and creep resistance of Mg-(8%-12%) Zn-(2%-6%) A1 alloys were investigated to get a better overall understanding of these series alloys. The results indicate that the microstructure of the alloys ZA82, ZA102 and ZA122 with the mass ratio of Zn to A1 of 4-6 is mainly composed of a-Mg matrix and two different morphologies of precipitates (block τ-Mg32(Al, Zn)49 and dense lamellar ε-Mg51Zn20), the alloys ZA84, ZA104 and ZA124 with the mass ratio of 2-3 contain α-Mg matrix and only block r phases, and the alloys ZA86, ZA106 and ZA126 with the mass ratio of 1-2 consist of a-Mg matrix, block r precipitates, lamellar Ф-Al2Mg5Zn2 eutectics and flocculent β-Mg17Al12 compounds. The alloys studied with the mass ratio of Zn to A1 of 2-3 exhibit high creep resistance, and the alloy ZA124 with the continuous network of r precipitating along grain boundaries shows the highest creep resistance.
基金Project(11541012) supported by the Scientific Research Foundation of Heilongjiang Provincial Education Department,China
文摘The thermal expansion coefficients of Cu-Zn alloy before and after high pressure treatment were measured by thermal expansion instrument in the temperature range of 25?700 ℃,and the microstructure and phase transformation of the alloy were examined by optical microscope,X-ray diffractometer(XRD) and differential scanning calorimeter(DSC).Based on the experimental results,the effects of high pressure treatment on the microstructure and thermal expansion of Cu-Zn alloy were investigated.The results show that the high pressure treatment can refine the grain and increase the thermal expansion coefficient of the Cu-Zn alloy,resulting in that the thermal expansion coefficient exhibits a high peak value on the α-T curve,and the peak value decreases with increasing the pressure.
基金Projects(51301082,51464031,51201158)supported by the National Natural Science Foundation of China
文摘Compressive anisotropy of extruded Mg-2Dy-0.5Zn (mole fraction, %) alloy sheet was investigated. The alloy sheet was mainly composed ofα-Mg, (Mg, Zn)xDy phase and a large number of long period stacking ordered (LPSO) phases distributed along the extrusion direction. The compressive experimental results show that the alloy sheet exhibits an obvious compressive anisotropy. The compressive strength of the specimen in the extrusion direction (ED) is higher than those of the specimens in the transverse direction (TD) and 45° inclined to the extrusion direction. The compressive yield strength (CYS), ultimate compressive strength (UCS) and compressive strain of the specimen in the ED are 274.65 MPa, 518.94 MPa and 12.93%, respectively. The compressive anisotropy is mainly attributed to the distribution of LPSO phase and formation of〈10 10〉//ED fiber texture in the deformed grains.
基金Project(2014GK2013)supported by the Science and Technology Program of Hunan Province,China
文摘The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate.
基金Project(2007CB613706)supported by the National Basic Research Program of ChinaProject(PHR200906101)supported by Innovation Project for Talents of the Beijing Municipal Education Commission,ChinaProject(00900054R7001)supported by Innovation Project forTeam of the Beijing Municipal Education Commission,China
文摘The microstructure and mechanical properties of the cast and extruded Mg-12Zn-1.5Er alloys were investigated. The I-phase observed in the cast Mg-12Zn-1.5Er alloy was broken during hot extrusion. The microstructure of the alloy was refined due to the dynamic recrystallization, and the equiaxed grains have size in the range of 2 5 μm. Moreover, a great deal of nano-scale particles precipitate in the recrystallized grains. Compared with the cast one, the extruded alloy shows a great improvement on the mechanical properties as the result of refined microstructure, the dispersed I-phase and the fine precipitates. The ultimate tensile strength and the yield tensile strength of this extruded alloy are 359 and 318 MPa, respectively.
基金Projects(51271040,51171031)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The formation of periodic layered structure in Ni3Si/Zn diffusion couples with Zn in vapor or liquid state was investigated by SEM-EDS, FESEM and XRD. The results show that the diffusion path in solid-liquid reaction is Ni3Si/(T+γ)/γ/…T/γ/Ni4Zn12Si3/γ/…Ni4Zn12Si3/γ/Ni4Zn12Si3/δ…/Ni4Zn12Si3/δ/liquid-Zn, and the diffusion path in solid-vapor reaction is Ni3Si/θ/(T+γ)/γ/…/T/γ/…T/γ/vapor-Zn. With increasing Zn diffusion flux, the diffusion reaction path moves toward the Zn-rich direction, and the distance from the Ni3Si substrate to the periodic layer pair nearest to the interface decreases. In the initial stage of both reactions,γphase nucleates and grows within T matrix phase at first, and then conjuncts together to form a band to reduce the surface energy. Based on the experimental results and diffusion kinetics analysis, the microstructure differences were compared and the formation mechanism of the periodic layered structure in Ni3Si/Zn system was discussed.
基金Foundation item:Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(CSTC2013jcyj C60001)supported by the Chongqing Science and Technology Commission of ChinaProject(CQUT1205)supported by the Open Funds from Key Laboratory of Manufacture and Test Techniques for Automobile Parts(Chongqing University of Technology),Ministry of Education,China
文摘The as-cast microstructures and mechanical properties of Mg?4Zn?xY?1Ca (x=1.0, 1.5, 2.0 and 3.0, mass fraction, %) alloys were investigated and compared. The results indicate that all the as-cast alloys are mainly composed ofα-Mg, Mg2Ca, Ca2Mg6Zn3,I (Mg3YZn6) andW (Mg3Y2Zn3) phases. However, with Y content increasing from 0.86% to 2.68%, the amount of the Ca2Mg6Zn3 phase gradually decreases but that of theI (Mg3YZn6) andW (Mg3Y2Zn3) phases gradually increases. Furthermore, an increase in Y content from 0.86% to 2.68% also causes the grain size of the as-cast alloys to gradually decrease. In addition, the tensile and creep properties of the as-cast alloys vary with Y content. Namely, with Y content increasing from 0.86% to 2.68%, the creep properties gradually increase, whereas the tensile properties firstly increase and attain the maximum at 1.77% Y, beyond that they decrease. Amongst the as-cast alloys with 0.86% Y, 1.19% Y, 1.77% Y and 2.68% Y, the alloy with 1.77% Y exhibits the relatively optimal tensile and creep properties.
基金financial supports from the National Natural Science Foundation of China (51771115,51775334)Joint Fund for Space Science and Technology (6141B06310106),ChinaChina and National Defense Science and Technology Innovation Special Zone Project (002-002-01),China。
文摘The effects of Al/Zn ratio(mass ratio) on microstructure and mechanical properties of the Mg-8 Li alloy were investigated. The results indicate that in the as-cast Mg-8Li-xAl-yZn(x+y=5) alloys(LAZ alloys), when the Al/Zn ratio is 1:4 and 2:3, the secondary phases are mainly AlLi and MgLiZn phases;when the Al/Zn ratio is 3:2 and 4:1, the secondary phases are mainly AlLi and MgLi2Al phases. The decomposition temperature of MgLiZn phase is about 300 ℃ and the decomposition temperatures of AlLi phase and MgLi2 Al phase are higher(~350 ℃). Solid solution strengthening is the main factor for the improvement of strength of Mg-8Li-xAl-yZn alloys. The Mg-8 Li-3 Al-2 Zn alloy after solution treatment at 350 ℃ for 4 h has the best comprehensive mechanical properties(yield strength of 272.5 MPa, ultimate tensile strength of 315.0 MPa and elongation of 3.4%) among the studied as-cast and solid solution treated Mg-8Li-xAl-yZn alloys.
基金National Natural Science Foundation of China(Nos.U1610123,51674226,51574207)International Cooperation project of the Ministry of Science and Technology of China(No.2014DFA50320)Science and Technology Major Project of Shanxi Province(No.MC2016-06)
文摘Magnesium alloys possess lots of unique advantages as one of the most promising materials. However, relatively poor mechanical properties limit the application of Mg alloys. As a relatively excellent strengthing phase, icosahedral quasicrystal phased-phase) has great influence on Mg-Zn-Y-(Zr) alloys. The yield strength of Mg-Zn-Y-(Zr) alloys could reach 150 - 450 MPa at room temperature with different I-phase volume fractions, therefore the formation of I-phase has been regared as an effective method to improve the performance of Mg alloys. In this review paper, a series of researches about the Mg-Zn-Y-(Zr) alloys containing I-phase have been discussed, mainly including the current understandings about formation mechanism and I- phase structure, its orientation relationship with a-Mg matrix, and the effect of I-phase on Mg-Zn-Y-(Zr) alloys.
基金Project(2021zzts0152) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1837207) supported by the National Natural Science Foundation of China。
文摘The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn_(2)precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion(IGC) and exfoliation corrosion(EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.
基金the National Natural Science Foundation of China(Nos.U1764253,U2037601,52001037 and 51971044)the National Defense Basic Scientific Research Program of China+1 种基金the Chongqing Science and Technology Commission,China(No.cstc2017zdcyzdzx X0006)the Qinghai Science and Technology Program,China(No.2018-GX-A1)。
文摘The influence of Mn content on the microstructure,tensile properties and strain-hardening behaviors of extruded Mg−1Gd−0.5Zn−xMn(x=0,0.3 and 1,wt.%)alloy sheets was investigated by X-ray diffraction(XRD),scanning electron microscope(SEM),and electron backscatter diffraction(EBSD).The results show that the completely recrystallized grain structure and the extrusion direction(ED)-titling texture are observed in all the extruded sheets.The mean grain size and weakened ED-titling texture of the extruded sheets are gradually reduced with increasing Mn content.This is primarily associated with the formation of new fineα-Mn particles by Mn addition.Tensile properties show that the addition of Mn also leads to the improvement of yield strengths,ultimate tensile strengths and elongations of the extruded Mg−1Gd−0.5Zn−xMn sheets,which is mainly due to the fine grains andα-Mn particles.In addition,the Mg−1Gd−0.5Zn−1Mn sheet has the lowest strain-hardening exponent and the best hardening capacity among all prepared Mg−1Gd−0.5Zn−xMn sheets.
基金Project(2016YFB0301004)supported by the National Key Research and Development Program of ChinaProject(51771115)supported by the National Natural Science Foundation of China+3 种基金Project(6141B06310106)supported by the Joint Fund for Space Science and Technology,ChinaProject(009-031-001)supported by the Science and Technology Innovation Program,ChinaProject(USCAST2016-18)supported by the Research Program of Joint Research Center of Advanced Spaceflight Technologies,ChinaProject(SAST2016048)supported by the Science Innovation Foundation of Shanghai Academy of Spaceflight Technology,China
文摘The as-cast Mg-8 Li-xZn-yGd(x=1 2, 3,4;y=1,2;wt.%)alloys were prepared in a vacuum induction furnace and their microstructure and mechanical properties were investigated. The results show that the increase of Zn content results in the volume fraction of W-phase(Mg3 Zn3 Gd2) increasing while that of Mg3 Gd phase decreasing. The strength of Mg-8 Li-xZn-1 Gd alloys is improved with the increase of Zn content,which is ascribed to the second phase strengthening of fine strip-like W-phase and the solid solution strengthening of Zn element.For Mg-8 Li-4 Zn-yGd alloys,the increase of Gd content leads to the appearance of coarse and discontinuous net-like W-phase, which decreases the strength. The Mg-8 Li-4 Zn-1 Gd alloy exhibits an optimum comprehensive performance with the yield strength, ultimate tensile strength and elongation of 154.7 MPa, 197.0 MPa and 12.4%, respectively. In addition,the aging behavior of the typical alloys was also investigated.
基金the financial supports from the National Natural Science Foundation of China(No.51701172)Educational Commission of Hunan Province,China(No.20B579)+2 种基金Major Program of Hunan Province,China(No.2018RS3091)China Postdoctoral Science Foundation(No.2018M632977)the Natural Science Foundation of Hunan Province,China(No.2018JJ3504).
文摘The microstructure and properties of the as-cast,as-homogenized and as-extruded Mg−6Zn−4Sn−1Mn(ZTM641)alloy with various Al contents(0,0.5,1,2,3 and 4 wt.%)were investigated by OM,XRD,DSC,SEM,TEM and uniaxial tensile tests.The results show that when the Al content is not higher than 0.5%,the alloys are mainly composed of α-Mg,Mg_(2)Sn,Al_(8)Mn_(5)and Mg_(7)Zn_(3)phases.When the Al content is higher than 0.5%,the alloys mainly consist ofα-Mg,Mg_(2)Sn,MgZn,Mg_(32)(Al,Zn)_(49),Al_(2)Mg_(5)Zn_(2),Al_(11)Mn_(4)and Al_(8)Mn_(5)phases.A small amount of Al(≤1%)can increase the proportion of fine dynamic recrystallized(DRXed)grains during hot-extrusion process.The roomtemperature tensile test results show that the ZTM641−1Al alloy has the best comprehensive mechanical properties,in which the ultimate tensile strength is 332 MPa,yield strength is 221 MPa and the elongation is 15%.Elevatedtemperature tensile test results at 150 and 200℃ show that ZTM641−2Al alloy has the best comprehensive mechanical properties.
文摘To investigate the effect of grain refinement on the material properties of recently developed Al-25 Zn-3 Cu based alloys,Al-25 Zn-3 Cu,Al-25 Zn-3 Cu-0.01 Ti,Al-25 Zn-3 Cu-3 Si and Al-25 Zn-3 Cu-3 Si-0.01 Ti alloys were produced by permanent mold casting method.Microstructures of the alloys were examined by SEM.Hardness and mechanical properties of the alloys were determined by Brinell method and tensile tests,respectively.Tribological characteristics of the alloys were investigated by a ball-on-disc type test machine.Corrosion properties of the alloys were examined by an electrochemical corrosion experimental setup.It was observed that microstructure of the ternary A1-25 Zn-3 Cu alloy consisted ofα,α+ηandθ(Al2Cu)phases.It was also observed that the addition of 3 wt.%Si to A1-25Zn-3Cu alloy resulted in the formation of silicon particles in its microstructure.The addition of 0.01 wt.%Ti to the Al-25Zn-3Cu and Al-25 Zn-3 Cu-3 Si alloys caused a decrement in grain size by approximately 20%and 39%and an increment in hardness from HRB 130 to 137 and from HRB 141 to 156,respectively.Yield strengths of these alloys increased from 278 to 297 MPa and from 320 to 336 MPa while their tensile strengths increased from 317 to 340 MPa and from 334 to 352 MPa.Wear resistance of the alloys increased,but corrosion resistance decreased with titanium addition.
文摘The Al-Zn eutectoid alloy has been widely known as a typical superplastic metallic material, where fine-grained microstructure is usually obtained by heat treatment. Recently, thermo-mechanical controlled process has also been reported to provide a fine-grained microstructure. In the present study, Al-Zn alloy ingots of 20 mm in thickness were homogenized and hot-rolled to a thickness of 2 mm under three processes: 1) the specimen was air-cooled after homogenization and hot-rolled; 2) the specimen was water-quenched after homogenization and hot-rolled; 3) the specimen was immediately hot-rolled after homogenization. Microstructural observation showed that, in processes l and 3, lamellar microstructure was formed after homogenization, and became fragmented to fine-grained microstructure as the hot roiling process proceeded. In process 2, fine-grained microstructure without lamellar microstructure was attained throughout the hot-rolling process. A minimum grain size of 1.6 μm was obtained in process 3. Tensile tests at room temperature showed that the elongation to failure was the largest in process 3.