分形维数作为战场声信号的特征,存在特征数量不足,反映信号非线性不充分的问题,提出了一种基于SVD与数学形态学分形维数谱(Singular Value Decomposition And Mathematical Morphological Fractal Dimensions Spectrum,SVD-MMFDS)的战...分形维数作为战场声信号的特征,存在特征数量不足,反映信号非线性不充分的问题,提出了一种基于SVD与数学形态学分形维数谱(Singular Value Decomposition And Mathematical Morphological Fractal Dimensions Spectrum,SVD-MMFDS)的战场声特征提取方法。对声信号构造Hankel矩阵,再进行SVD分解,根据信号频率与奇异值的关系,重构信号分量。将这些重构信号依次线性叠加,每叠加一次信号分量就计算一次分形维数,直至完全恢复原信号;通过这种方法,构成数量多且更能反映信号非线性的分形维数谱。运用半实物仿真实验将SVD与数学形态学分形维数谱的方法,与变分模态分解(VMD)和分形维数结合的方法进行对比,该方法提取的战场声特征具有更好的区分度且特征数量更多,为利用信号非线性来识别战场声目标提供较好的选择。展开更多
文摘分形维数作为战场声信号的特征,存在特征数量不足,反映信号非线性不充分的问题,提出了一种基于SVD与数学形态学分形维数谱(Singular Value Decomposition And Mathematical Morphological Fractal Dimensions Spectrum,SVD-MMFDS)的战场声特征提取方法。对声信号构造Hankel矩阵,再进行SVD分解,根据信号频率与奇异值的关系,重构信号分量。将这些重构信号依次线性叠加,每叠加一次信号分量就计算一次分形维数,直至完全恢复原信号;通过这种方法,构成数量多且更能反映信号非线性的分形维数谱。运用半实物仿真实验将SVD与数学形态学分形维数谱的方法,与变分模态分解(VMD)和分形维数结合的方法进行对比,该方法提取的战场声特征具有更好的区分度且特征数量更多,为利用信号非线性来识别战场声目标提供较好的选择。