The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analy...The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analyzed by using DSC, EBSD, TEM, Vickers hardness analysis and tensile test. The results show that the cryo-rolled treatment has an effect on the precipitation sequence of AA6061 Al alloy. The ultrafine grain structures are formed to promote the fine second phase particles to disperse in the aluminum matrix after the peak aging, which is attributed to lots of dislocations tangled in the rolling process. Therefore, the strength and ductility of AA6061 Al alloy are simultaneously modified after the cryo-rolling and aging treatment compared with room temperature rolled one.展开更多
Commercial purity and high purity titanium sheets were initially strained by a new technique, named as friction roll surface processing (FRSP). Severe strain was imposed into the surface layer and strain gradient wa...Commercial purity and high purity titanium sheets were initially strained by a new technique, named as friction roll surface processing (FRSP). Severe strain was imposed into the surface layer and strain gradient was formed through the thickness of the sheet. The microstructure and texture in as-strained state were investigated by optical microscopy and X-ray diffraction technique On the surface of the sheets, ultra-fine grains were found to have a sharp texture with a preferred orientation strongly related to the FRSP direction. The evolution of microstructure and crystallographic texture of FRSPed samples during recrystallization were also studied by electron back-scattered diffraction (EBSD) technique after being annealed at selected temperatures and time. The results indicated that the preferred orientations resulting from FRSP and annealing in the surface layer were formed during rolling and its recrystallization textures were reduced by FRSP. In addition, the texture evolved stably without change in main components during the annealing.展开更多
In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay functi...In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay function was used to establish SR model for each grain size.A simplified algorithm was proposed for calculating the deformation activation energy based on classical Arrhenius equation.The grain size distribution and variation were observed by microstructural methods.The experimental results indicate that smaller grains are earlier to reach the relaxation limit at the same temperature due to lower initial stress and faster relaxation rate.The SR limit at 650℃ reduces with decreasing grain size.While the effect of grain size on SR limit is not evident at 700 and 750℃ since the relaxation is fully completed.With the increase of grain size,the deformation activation energy is improved and SR mechanism at 700℃ changes from grain rotation and grain boundary sliding to dislocation movement and dynamic recovery.展开更多
The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration freque...The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration frequencies and the microstructures were observed.The average size of grains was quantitatively measured as a function of vibration frequencies. Moreover,the grain size distribution was outlined versus number fraction.A novel model was proposed to account for the microstructure formation and grain refinement when considering the significant difference of the electrical resistivity properties of the solid and the liquid during EMV processing in the semisolid state.The remarkable difference originates uncoupled movement between the mobile solid and the sluggish liquid,which can activate melt flow.The microstructure evolution can be well explained when the fluid flow intensity versus vibration frequency is taken into account.Moreover,the influence of the static magnetic field on texture formation is also considered,which plays an important role at higher vibration frequencies.展开更多
Effect of electromagnetic stirring on microstructure of AZ91-0.8%Ce magnesium alloy was investigated. The results show that electromagnetic stirring causes a change of morphology of α-Mg phase from coarse dendrites t...Effect of electromagnetic stirring on microstructure of AZ91-0.8%Ce magnesium alloy was investigated. The results show that electromagnetic stirring causes a change of morphology of α-Mg phase from coarse dendrites to fine rosette-like or spherical shape. Grain size is significantly refined within the range of input voltage 75?125 V, moreover, the optimum input voltage corresponded to the minimum value (64 μm) of grain size is 125 V. Compared to the non-stirred condition, the amount of β-Mg17Al12 precipitate under the stirred condition obviously increases. The grain refinement of AZ91-0.8%Ce alloy is mainly attributed to multiplication of existing grains in the melt caused by forced fluid flow under electromagnetic stirring condition. Addition of 0.8% Ce results in the formation of ‘necking’ at secondary dendrite arm roots of α-Mg crystals, and consequently, it is helpful to increase the number of heterogeneous nucleation.展开更多
In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cas...In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.展开更多
Shock wave is associated with dynamic loading that can result in phase transition(PT), optical and mechanical property changing, and chemical reaction on materials. Here, we report recent progress about shockinduced P...Shock wave is associated with dynamic loading that can result in phase transition(PT), optical and mechanical property changing, and chemical reaction on materials. Here, we report recent progress about shockinduced PT of polycrystalline iron, the underlying mechanism of the optical emission from sapphire, and the synthesis from single-phase Ru Si in the National Key Laboratory of Shock Wave and Detonation Physics.Results indicated that grain boundary(GB) could affect the PT pressure threshold and rate of iron, the pressure threshold decreases with decreasing GB defects, and the PT rate shows a variation with increasing GB size; wavelength-dependent optical emissivity(non-gray-body emission) would be generated that was not revealed previously for shocked sapphire, and the observed luminescence was from the shock-induced shear bands, but without superheating phenomenon; shock compression could be an effective way to synthesis Ru-Si nanocrystals, when the shock pressure was appropriate; and Ru-Si powder could completely transform to fine-grain structure Cs Cl-type RuSi at 40.4 GPa.展开更多
The three dimensional(3D) microstructures of Al-Bi alloys with different grain refiners(Al-5Ti-B, Al-3B and Al-3Ti) have been studied using synchrotron X-ray microtomography. The relationships between the microstructu...The three dimensional(3D) microstructures of Al-Bi alloys with different grain refiners(Al-5Ti-B, Al-3B and Al-3Ti) have been studied using synchrotron X-ray microtomography. The relationships between the microstructures and the corresponding wear behavior are verified through the friction and wear tests. The worn surfaces of the samples with grain refiners tested under 15 and 60 N loads are analyzed using Scanning Electron Microscopy(SEM). The results indicate that the addition of grain refiners is beneficial to the size and distribution of the Bi-rich particles in Al-Bi alloys. Compared with Al-5Ti-B and Al-3B grain refiners, the Bi-rich particles are more uniformly distributed and spherical with finer size with the addition of Al-3Ti grain refiner. The refinement renders the Al-20wt%Bi alloy refined by Al-3Ti the superior wear resistance with respect to those refined by Al-5Ti-B and Al-3B grain refiners, corresponding to the microstructures with fine and uniformly distributed Bi-rich particles in the Al matrix.展开更多
基金Project(zzyjkt2013-07B) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,China
文摘The microstructure and mechanical properties of the age hardening AA6061 Al alloy subjected to cryo-rolling(CR) and room temperature rolling(RTR) treatments were investigated. The rolled and aged alloys were analyzed by using DSC, EBSD, TEM, Vickers hardness analysis and tensile test. The results show that the cryo-rolled treatment has an effect on the precipitation sequence of AA6061 Al alloy. The ultrafine grain structures are formed to promote the fine second phase particles to disperse in the aluminum matrix after the peak aging, which is attributed to lots of dislocations tangled in the rolling process. Therefore, the strength and ductility of AA6061 Al alloy are simultaneously modified after the cryo-rolling and aging treatment compared with room temperature rolled one.
基金support in part by Grant-in-aid for Scientific Research from the Japan Society for Promotion of Science under Contract No. 16560605
文摘Commercial purity and high purity titanium sheets were initially strained by a new technique, named as friction roll surface processing (FRSP). Severe strain was imposed into the surface layer and strain gradient was formed through the thickness of the sheet. The microstructure and texture in as-strained state were investigated by optical microscopy and X-ray diffraction technique On the surface of the sheets, ultra-fine grains were found to have a sharp texture with a preferred orientation strongly related to the FRSP direction. The evolution of microstructure and crystallographic texture of FRSPed samples during recrystallization were also studied by electron back-scattered diffraction (EBSD) technique after being annealed at selected temperatures and time. The results indicated that the preferred orientations resulting from FRSP and annealing in the surface layer were formed during rolling and its recrystallization textures were reduced by FRSP. In addition, the texture evolved stably without change in main components during the annealing.
基金Projects(2016ZE57008,20163657004)supported by Aeronautical Science Foundation of ChinaProject(USCAST2016-20)supported by the SAST-SJTU Joint Research Centre of Advanced Aerospace Technology,ChinaProject(51875350)supported by the National Natural Science Foundation of China
文摘In order to analyze the effect of grain size on stress relaxation(SR) mechanism,the SR tests of TC4 alloy with three kinds of grain size were performed in a temperature range of 650-750℃.A modified cubic delay function was used to establish SR model for each grain size.A simplified algorithm was proposed for calculating the deformation activation energy based on classical Arrhenius equation.The grain size distribution and variation were observed by microstructural methods.The experimental results indicate that smaller grains are earlier to reach the relaxation limit at the same temperature due to lower initial stress and faster relaxation rate.The SR limit at 650℃ reduces with decreasing grain size.While the effect of grain size on SR limit is not evident at 700 and 750℃ since the relaxation is fully completed.With the increase of grain size,the deformation activation energy is improved and SR mechanism at 700℃ changes from grain rotation and grain boundary sliding to dislocation movement and dynamic recovery.
文摘The microstructure formation and grains refinement of two Mg-based alloys,i.e.AZ31 and AZ91D,were reported using an electromagnetic vibration(EMV) technique.These two alloys were solidified at various vibration frequencies and the microstructures were observed.The average size of grains was quantitatively measured as a function of vibration frequencies. Moreover,the grain size distribution was outlined versus number fraction.A novel model was proposed to account for the microstructure formation and grain refinement when considering the significant difference of the electrical resistivity properties of the solid and the liquid during EMV processing in the semisolid state.The remarkable difference originates uncoupled movement between the mobile solid and the sluggish liquid,which can activate melt flow.The microstructure evolution can be well explained when the fluid flow intensity versus vibration frequency is taken into account.Moreover,the influence of the static magnetic field on texture formation is also considered,which plays an important role at higher vibration frequencies.
基金Project(2004ABA110) supported by the Natural Science Foundation of Hubei Province project(471-38300843) supported by the Research Foundation for the Doctoral Program of Wuhan University of Technology
文摘Effect of electromagnetic stirring on microstructure of AZ91-0.8%Ce magnesium alloy was investigated. The results show that electromagnetic stirring causes a change of morphology of α-Mg phase from coarse dendrites to fine rosette-like or spherical shape. Grain size is significantly refined within the range of input voltage 75?125 V, moreover, the optimum input voltage corresponded to the minimum value (64 μm) of grain size is 125 V. Compared to the non-stirred condition, the amount of β-Mg17Al12 precipitate under the stirred condition obviously increases. The grain refinement of AZ91-0.8%Ce alloy is mainly attributed to multiplication of existing grains in the melt caused by forced fluid flow under electromagnetic stirring condition. Addition of 0.8% Ce results in the formation of ‘necking’ at secondary dendrite arm roots of α-Mg crystals, and consequently, it is helpful to increase the number of heterogeneous nucleation.
基金Projects(2020YFB0311400ZL, 2020YFF0218202) supported by the National Key R&D Program of ChinaProject supported by Youth Fund Project of GRINM Group Co.,Ltd.,China。
文摘In the present work, scandium elements with a series of contents(0.06 wt.%, 0.10 wt.%, 0.14 wt.%,0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2phases discontinuously distributed on them. Besides,AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.
基金partially supported by the National Natural Science Foundation of China(U1230202,11072227and 11272294)the Foundation of National Key Laboratory of Shock Wave and Detonation Physics(9140C670302130C67239)the Science and Technology Foundation of China Academy of Engineering Physics(2012A0201007)
文摘Shock wave is associated with dynamic loading that can result in phase transition(PT), optical and mechanical property changing, and chemical reaction on materials. Here, we report recent progress about shockinduced PT of polycrystalline iron, the underlying mechanism of the optical emission from sapphire, and the synthesis from single-phase Ru Si in the National Key Laboratory of Shock Wave and Detonation Physics.Results indicated that grain boundary(GB) could affect the PT pressure threshold and rate of iron, the pressure threshold decreases with decreasing GB defects, and the PT rate shows a variation with increasing GB size; wavelength-dependent optical emissivity(non-gray-body emission) would be generated that was not revealed previously for shocked sapphire, and the observed luminescence was from the shock-induced shear bands, but without superheating phenomenon; shock compression could be an effective way to synthesis Ru-Si nanocrystals, when the shock pressure was appropriate; and Ru-Si powder could completely transform to fine-grain structure Cs Cl-type RuSi at 40.4 GPa.
基金supported by the National Natural Science Foundation of China(Grant Nos.51274054,U1332115,51271042,51375070 and 51401044)the Key Grant Project of Chinese Ministry of Education(Grant No.313011)+1 种基金the Science and Technology Planning Project of Dalian(Grant No.2013A16GX110)the Fundamental Research Funds for the Central Universities
文摘The three dimensional(3D) microstructures of Al-Bi alloys with different grain refiners(Al-5Ti-B, Al-3B and Al-3Ti) have been studied using synchrotron X-ray microtomography. The relationships between the microstructures and the corresponding wear behavior are verified through the friction and wear tests. The worn surfaces of the samples with grain refiners tested under 15 and 60 N loads are analyzed using Scanning Electron Microscopy(SEM). The results indicate that the addition of grain refiners is beneficial to the size and distribution of the Bi-rich particles in Al-Bi alloys. Compared with Al-5Ti-B and Al-3B grain refiners, the Bi-rich particles are more uniformly distributed and spherical with finer size with the addition of Al-3Ti grain refiner. The refinement renders the Al-20wt%Bi alloy refined by Al-3Ti the superior wear resistance with respect to those refined by Al-5Ti-B and Al-3B grain refiners, corresponding to the microstructures with fine and uniformly distributed Bi-rich particles in the Al matrix.